## DUHAMEL

## First Order Equation

The initial-value problem

$$
\dot{u}(t)+A u(t)=0, \quad u(0)=\varphi,\left.\quad u\right|_{\Gamma}(t)=0,
$$

is well-posed. This defines the semigroup $\{E(t)\}$ by

$$
u(t) \equiv E(t) \varphi
$$

$$
\dot{u}(t)+A u(t)=f(t), \quad u(0)=\varphi,\left.\quad u\right|_{\Gamma}(t)=0 .
$$

Note: $\frac{d}{d \tau} E(t-\tau) u(\tau)=E(t-\tau)\{\dot{u}(\tau)+A u(\tau)\}=E(t-\tau) f(\tau)$, and an integration yields

$$
u(t)=E(t) \varphi+\int_{0}^{t} E(t-\tau) f(\tau) d \tau
$$

$$
\dot{u}(t)+A u(t)=0, \quad u(0)=0,\left.\quad u\right|_{\Gamma}(t)=g(t)
$$

Let $A\left(u_{g}(t)\right)=0, \quad \gamma\left(u_{g}(t)\right)=g(t)$. Define $w(t)=u(t)-u_{g}(t)$ Then

$$
\dot{w}(t)+A w(t)=-\dot{u}_{g}(t), \quad u(0)=-u_{g}(0),\left.\quad u\right|_{\Gamma}(t)=0,
$$

and we have from above

$$
\begin{gathered}
w(t)=-E(t) u_{g}(0)-\int_{0}^{t} E(t-\tau) \dot{u}_{g}(\tau) d \tau \\
=-u_{g}(t)-\int_{0}^{t} E^{\prime}(t-\tau) u_{g}(\tau) d \tau \\
u(t)=-\int_{0}^{t} E^{\prime}(t-\tau) u_{g}(\tau) d \tau=\int_{0}^{t} A E(t-\tau) u_{g}(\tau) d \tau
\end{gathered}
$$

## Second Order Equation

The initial-value problem

$$
\ddot{w}(t)+A w(t)=0, \quad w(0)=0, \quad \dot{w}(0)=\psi,\left.\quad w\right|_{\Gamma}(t)=0,
$$

is well-posed. This defines the operators $\{S(t)\}$ by

$$
w(t) \equiv S(t) \psi
$$

The derivative of these operators can be used to represent the solution of

$$
\ddot{w}(t)+A w(t)=0, \quad w(0)=\varphi, \quad \dot{w}(0)=0,\left.\quad w\right|_{\Gamma}(t)=0,
$$

by the formula

$$
w(t)=S^{\prime}(t) \varphi
$$

$$
\ddot{w}(t)+A w(t)=f(t), \quad w(0)=\varphi, \quad \dot{w}(0)=\psi,\left.\quad w\right|_{\Gamma}(t)=0 .
$$

Note:

$$
\begin{aligned}
\frac{d}{d \tau}\left\{S(t-\tau) \dot{w}(\tau)+S^{\prime}(t-\tau) w(\tau)\right\}= & \\
& S(t-\tau)\{\ddot{w}(\tau)+A w(\tau)\}=S(t-\tau) f(\tau)
\end{aligned}
$$

and an integration yields

$$
w(t)=S^{\prime}(t) \varphi+S(t) \psi+\int_{0}^{t} S(t-\tau) f(\tau) d \tau
$$

$$
\ddot{w}(t)+A w(t)=0, \quad w(0)=0, \quad \dot{w}(0)=0,\left.\quad w\right|_{\Gamma}(t)=g(t)
$$

Let $A\left(w_{g}(t)\right)=0, \quad \gamma\left(w_{g}(t)\right)=g(t)$. Define $u(t)=w(t)-w_{g}(t)$. Then

$$
\ddot{u}(t)+A u(t)=-\ddot{w}_{g}(t), \quad u(0)=-w_{g}(0), \quad \dot{u}(0)=-\dot{w}_{g}(0),\left.\quad u\right|_{\Gamma}(t)=0
$$

so we have from above

$$
\begin{gathered}
u(t)=-S^{\prime}(t) w_{g}(0)-S(t) \dot{w}_{g}(0)-\int_{0}^{t} S(t-\tau) \ddot{w}_{g}(\tau) d \tau \\
=-S^{\prime}(t) w_{g}(0)-\int_{0}^{t} S^{\prime}(t-\tau) \dot{w}_{g}(\tau) d \tau \\
=-S^{\prime}(0) w_{g}(t)+\int_{0}^{t} A S(t-\tau) w_{g}(\tau) d \tau \\
w(t)=u(t)+w_{g}(t)=\int_{0}^{t} A S(t-\tau) w_{g}(\tau) d \tau
\end{gathered}
$$

