
1. Homogenization

Let Ω be a smoothly bounded region and let Y be the unit cube in IRN . Assume the
coefficient function a(·) is defined on IRN and is Y -periodic. Let ε > 0. We want to
approximate the solution to the singular problem

(1.1) uε ∈ H1
0 (Ω) :

∫
Ω

a(x/ε)∇uε(x) ·∇ϕ(x) dx =

∫
Ω

F (x)ϕ(x) dx for all ϕ ∈ H1
0 (Ω).

We seek an approximation in the form

uε(x) = u(x, x/ε) + εU(x, x/ε) +O(ε2)

in which each u(x, ·) and U(x, ·) is Y -periodic. We call x the slow variable and y = x/ε
the fast variable. Note that the gradient is given (formally) by

∇uε(x) = ∇u(x, x/ε) +
1

ε
∇yu(x, x/ε) + ∇yU(x, x/ε) +O(ε)

by the chain rule ∇u(x, y) = ∇xu(x, y)+∇yu(x, y) ∂y
∂x

with y = x/ε and ∇ = ∇x. Since
the solution uε of (1.1) has a bounded gradient, it follows that ∇yu(x, y) = 0, so we have

uε(x) = u(x) + εU(x, x/ε) +O(ε2)(1.2a)

∇uε(x) = ∇u(x) + ∇yU(x, x/ε) +O(ε)(1.2b)

We will substute (1.2) into (1.1) with a test function of the same form, namely,

ϕ(x) + εΦ(x, x/ε)

where Φ(x, y) is Y -periodic for each x ∈ Ω. Ignoring terms O(ε) but testing over these
oscillations of order εY give the system

(1.3) u ∈ H1
0 (Ω), U ∈ L2(Ω, H1

#(Y )) :∫
Ω

∫
Y

a(y)(∇u(x) + ∇yU(x, y)) · (∇ϕ(x) + ∇yΦ(x, y)) dy dx =

∫
Ω

F (x)ϕ(x) dx

for all ϕ ∈ H1
0 (Ω), Φ ∈ L2(Ω, H1

#(Y )).

Next we decouple the system (1.3). First set φ = 0 to obtain the periodic boundary-
value problem

(1.4a) U ∈ L2(Ω, H1
#(Y )) :∫

Ω

∫
Y

a(y)(∇yU(x, y) + ∇u(x)) ·∇yΦ(x, y) dy dx = 0

for all Φ ∈ L2(Ω, H1
#(Y )).

Note that the input is ∇u(x), and this is independent of the fast variable, y. The solution
U(x, ·) is determined up to a constant (with respect to y), so the output ∇yU(x, ·) is
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uniquely determined. Then by setting Φ = 0 in (1.3) we obtain the variational boundary-
value problem

(1.4b) u ∈ H1
0 (Ω) :∫

Ω

∫
Y

a(y)(∇u(x) + ∇yU(x, y)) dy ·∇ϕ(x) dx =

∫
Ω

F (x)ϕ(x) dx

for all ϕ ∈ H1
0 (Ω).

The boundary-value problem (1.4a) is the micro-problem on Ω × Y , and (1.4b) is the
macro-problem on Ω. This homogenized system (1.4) is equivalent to (1.3).

Finally we obtain a single equation to describe the solution u to the macro-problem
by representing the solution U to the micro-problem in terms of u. The micro-problem
(1.4a) is equivalent to requiring for almost every x ∈ Ω that

U(x, ·) ∈ H1
#(Y ) :

∫
Y

a(y)(∇yU(x, y) + ∇u(x)) ·∇yΦ(y) dy = 0 for all Φ ∈ H1
#(Y ).

In order to represent the solution, we define Wi(y) for each 1 ≤ i ≤ N to be the solution
of the cell problem

(1.5) Wi ∈ H1
#(Y ) :

∫
Y

a(y)(∇yWi(y) + ei) ·∇yΦ(y) dy = 0 for all Φ ∈ H1
#(Y ),

where ei is the indicated coordinate vector in IRN . Then by linearity the solution of
(1.4a) is given by

U(x, y) =
i=N∑
i=1

∂iu(x)Wi(y).

This is substituted into (1.4b) to obtain

(1.6) u ∈ H1
0 (Ω) :

∫
Ω

aij∂iu(x) · ∂jϕ(x) dx =

∫
Ω

F (x)ϕ(x) dx for all ϕ ∈ H1
0 (Ω),

where the constant coefficients are given by

(1.7) aij =

∫
Y

a(y) (δij + ∂jWi(y)) dy .

The elliptic boundary-value problem (1.6) is the homogenized equation whose constant
coefficients are given by (1.7). It’s solution gives the first term in the expansion (1.2),
and the second term is determined by the solution of (1.4a), so these together give the
approximations

uε(x) = u(x) + ε ∇u(x) · (W1(x/ε), W2(x/ε), . . . , WN(x/ε)) +O(ε2) ,

∇uε(x) = ∇u(x) + ∇u(x) · (∇W1(x/ε), ∇W2(x/ε), . . . , ∇WN(x/ε)) +O(ε)

for the solution uε of the singular problem (1.1).
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