
J. Math. Anal. Appl. 365 (2010) 320–331
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and
Applications

www.elsevier.com/locate/jmaa

The narrow fracture approximation by channeled flow ✩

Fernando Morales, R.E. Showalter ∗

Department of Mathematics, Oregon State University, Corvallis, OR 97331-4605, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 April 2009
Available online 21 October 2009
Submitted by P. Sacks

Keywords:
Porous media
Heterogeneous
Narrow fracture
Singular Darcy system

The singular problem of non-stationary Darcy flow in a region containing a narrow channel
of width O(ε) and high permeability O ( 1

ε ) is shown to be well approximated by a problem
with flow concentrated on a weighted Sobolev space over a lower-dimensional interface.
The convergence of the solution as ε → 0 is proved for both the stationary case and the
corresponding initial-boundary-value problem. The structure of the limiting problems is
dependent on the rate of taper of the channel at its extremities.
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1. Introduction

Fluid flow through a fully-saturated porous medium is altered in the vicinity of a rigid wall by the sharp rise in perme-
ability due to the inefficiency of the packing of the particles in the vicinity of the wall. Consequently, in a narrow region
close to the wall the velocity is substantially higher and the flow is predominantly parallel to it; this phenomenon is known
as the channeling effect [9]. Related models were used previously to describe flow through a porous medium in the vicinity
of a narrow fracture which is characterized similarly as a thin interior region of high permeability. Such problems arise
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e.g. from hydraulic fracturing in which narrow channels of high permeability are created in the vicinity of a well to enhance
the flow rate and consequently the production. The narrow fracture approximation leads to a model like the one above for
thin channel flow, and by taking advantage of the symmetry about the center surface defining the fracture, one can reduce
such a problem to one of the type considered here with the high-permeability region located on the boundary [2,6]. Analo-
gous models of heat conduction arise from regions of high conductivity, and these may also include a concentrated capacity.
We include these in the discussion for comparison.

For a final example, we mention saturated gravity-driven flow of subsurface water through a hillslope bounded below
by sloping bedrock. A network of narrow channels of very high permeability develops in the vicinity of the impermeable
bedrock, and it is observed that most of the fluid in the system flows through this region. Such systems with high flow rate
over narrow regions greatly influence the transport and flow processes and are a topic of current study [16].

We shall describe such situations with Darcy flow for which the permeability is scaled to balance the channel width and
model the higher flow rates in the channel. Due to the higher permeability, the fluid flows primarily into and then tangential
to the channel. The resulting model captures the tangential boundary flow coupled to the interior flow by continuity of flux
and pressure. It contains two sources of singularity: a geometric one from the thinness of the channel and a material one
due to the higher permeability of the channel. With the appropriate scaling, these two singularities are balanced, and a
fully-coupled model is obtained in the limit as an approximation. See [4,10] for asymptotic analysis and [6] for numerical
analysis of these and related models.

An additional challenging issue is to account for the shape of the channel, especially for any taper near the edges or
boundary of the channel. Such shapes are ubiquitous in applications, but they are not commonly included in the modeling
process. They are important because the rate of the tapering at the edges determines the appropriate boundary conditions
(or lack thereof) that describe the resulting model [8,12].

The geometry of the model is described first. Let Ω1 be a bounded domain in R
n and denote by Γ a relatively-open

connected portion of its boundary ∂Ω1 along the top of the domain. For simplicity of representation, we assume this portion
of the boundary is flat, that is, Γ ⊂ R

n−1 × {0} and that xn < 0 for each x = (x̃, xn) ∈ Ω1, where x̃ ∈ R
n−1. The channel is

realized as a region of the form Ωε
2 = {(x̃,ω(x̃)xn): (x̃, xn) ∈ Γ × (0, ε)}. The function ω(·) shapes the width of the channel

at each x̃ ∈ Γ , and the parameter ε > 0 denotes its scale. We assume that this width function satisfies 0 < a � ω(x̃) � 1
on each compact subset of Γ , where a depends on the set, but it may approach zero near ∂Γ at a rate to be determined
below. This assumption permits the channel to be tapered or to pinch off near its extremities.

For the single-phase flow of a slightly compressible fluid through Ωε ≡ Ω1 ∪ Γ ∪ Ωε
2 , Darcy’s law together with conser-

vation of fluid mass lead to the interface problem

m1
∂uε

1

∂t
− ∇ · k1∇uε

1 = m1 f in Ω1,

uε
1 = 0 on ∂Ω1 − Γ,

uε
1 = uε

2, k1∂zuε
1 − k2

ε
∂zuε

2 = g on Γ,

m2
∂uε

2

∂t
− ∇ · k2

ε
∇uε

2 = m2 f in Ωε
2 ,

k2

ε

(∇uε
2

) · n̂ = 0 on ∂Ωε
2 − Γ, (1.1a)

at each t > 0 for the fluid density uε
1(·, t) in Ω1 and uε

2(·, t) in Ωε
2 , and these satisfy the initial conditions

u1(·,0) = u0
1(·) on Ω1, u2(·,0) = u0

2(·) on Ωε
2 . (1.1b)

Thus, the region is drained along ∂Ω1 − Γ and there is no flow across ∂Ωε
2 − Γ , where the outward normal is indicated

by n̂. This latter condition would follow if the region were symmetric about Γ × {ε}. The given initial density distributions
u0

j (·) complete the initial-boundary-value problem. Corresponding non-homogeneous problems with known pressure on

∂Ω1 − Γ and flow-rate along ∂Ωε
2 − Γ can be reduced to this case. The permeability in Ωε

2 has been scaled by 1
ε to

indicate the high flow rate, and this will be shown to balance the width ε of the channel, so the flow in Ωε
2 is closely

approximated by surface flow along Γ . It will be seen below that k2 is the effective tangential permeability and k2
ε2 is the

effective normal permeability for channel flow; see [6] for substantial discussion and further perspective. The coefficients m1,
m2 are obtained from the porosity and from the compressibility of either the fluid or the medium. We include for comparison
the concentrated capacity model in which also m2 is scaled by 1

ε , but this has nothing to do with porous media.

2. Preliminaries

We use standard notation and results on function spaces. L2(Ω) is the Hilbert space of (equivalence classes of) Lebesgue
square summable functions on Ω , and Hm(Ω), m � 1, with the norm ‖ · ‖m,Ω is the Sobolev space of functions in L2(Ω) for
which each weak derivative up to order m belongs to L2(Ω). The space H1(Ω) is the closure in H1(Ω) of those infinitely
0
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differentiable functions which have compact support in Ω . The trace γ (v) of a v ∈ H1(Ω) is its boundary value in H1/2(∂Ω).
The spaces with fractional exponents are defined by interpolation. Corresponding spaces of vector-valued functions are
denoted by bold-face symbols, L2(Ω), Hm(Ω). The space of those functions of L2(Ω) whose divergence belongs to L2(Ω) is
denoted by L2

div(Ω). These have a normal trace on the boundary. See [1,13–15].
Assume the interface Γ is an open bounded connected subset of R

n−1 and that it lies locally on one side of its boundary,
∂Γ , a C1 manifold. Let δ(x̃) be the distance from x̃ ∈ Γ to ∂Γ and 0 � α < 1. Define W (α) to be the space obtained by
completing H1(Γ ) in the weaker norm

‖v‖W (α) =
{∫

Γ

(
v(x̃)2 + δ(x̃)α

∥∥∇̃v(x̃)
∥∥2)

dx̃

}1/2

.

Here and in the following, ∇̃ denotes the R
n−1-gradient in directions tangent to Γ . It is known that the embedding W (α) →

L2(Γ ) is compact and the trace operator γ : W (α) → L2(∂Γ ) is continuous [3,7]. Here we assume the width function
satisfies

ω(x̃) � cδα(x̃) a.e. x̃ ∈ Γ (2.2)

for some c > 0, and we say Γ is weakly tapered. Then define H1
ω(Γ ) to be the completion of H1(Γ ) with the norm

‖v‖H1
ω

=
{∫

Γ

(
v(x̃)2 + ω(x̃)

∥∥∇̃v(x̃)
∥∥2)

dx̃

}1/2

.

As above, the embedding H1
ω(Γ ) → L2(Γ ) is compact and the trace operator γ : H1

ω(Γ ) → L2(∂Γ ) is continuous. More
generally, we have the following [12].

Theorem 2.1. Let the bounded domain Γ be given as above and let 0 � α < 1. Suppose there is a function α(·) on ∂Γ for which
0 � α(x̃) � α for each x̃ ∈ ∂Γ . Assume the function ω(·) satisfies (2.2) and that at each point of ∂Γ there is a neighborhood N in R

n−1

and constants 0 < c(N) < C(N) such that

(1) for each x̃ ∈ N ∩ Γ there is an x̃0 ∈ ∂Γ such that ‖x̃0 − x̃‖ = δ(x̃), and

(2) for each x̃ ∈ N ∩ Γ , c(N) � ω(x̃)
δ(x̃)α(x̃0)

� C(N).

Then the trace map is continuous from H1
ω(Γ ) into L2(∂Γ ), its kernel is the closure of C∞

0 (Γ ) in H1
ω(Γ ), and the range is dense in

L2(∂Γ ).

In the contrary case we call Γ strongly tapered if

ω(x̃) � Cδ(x̃) a.e. x̃ ∈ Γ, (2.3)

for some C > 0, and then C∞
0 (Γ ) is dense in H1

ω(Γ ), so H1
ω(Γ )′ is a space of distributions on Γ and L2(Γ ) ⊂ H1

ω(Γ )′ .
We recall some classical results for unbounded operators and the Cauchy problem; see [5,13] or the first chapter of

[14] for details. Let V be a Hilbert space, and denote its dual space of continuous linear functionals by V ′ . A bilinear form
a(·,·) : V × V → R is V -elliptic if there is c0 > 0 for which

a(u, u) � c0‖u‖2
V , u ∈ V .

The Lax–Milgram theorem shows this is a convenient sufficient condition for the associated problem to be well-posed.

Theorem 2.2. If a(·,·) is bilinear, continuous and V -elliptic, then for each f ∈ V ′ there is a unique

u ∈ V : a(u, v) = f (v), v ∈ V .

An unbounded linear operator A : D → H with domain D in the Hilbert space H is accretive if

(Ax, x)H � 0, x ∈ D,

and it is m-accretive if, in addition, A + I maps D onto H . Sufficient conditions for the initial-value problem to be well-posed
are provided by the Hille–Yoshida theorem.
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Theorem 2.3. Let the operator A : D → H be m-accretive on the Hilbert space H. Then for every u0 ∈ D(A) and f ∈ C1([0,∞), H)

there is a unique solution u ∈ C1([0,∞), H) of the initial-value problem

du

dt
(t) + Au(t) = f (t), t > 0, u(0) = u0. (2.4)

If additionally A is self-adjoint, then for each u0 ∈ H and Hölder continuous f ∈ Cβ([0,∞), H), 0 < β < 1, there is a unique solution
u ∈ C([0,∞), H) ∩ C1((0,∞), H) of (2.4).

Finally, the standard finite-difference approximation of (2.4) leads to the stationary problem with λ > 0,

u ∈ D(A): λu + A(u) = λF in H,

for the resolvent of the operator A. It is precisely the m-accretive operators for which this problem is always solvable with
‖u‖H � ‖F‖H .

3. The stationary problem

With the family of domains Ωε = Ω1 ∪Γ ∪Ωε
2 given above for each value of the parameter with 0 < ε � 1, the stationary

problem corresponding to the initial-value problem (1.1) takes the weak form

uε ∈ V ε :
∫
Ω1

λm1uε v dx +
∫
Ω1

k1∇uε · ∇v dx +
∫

Ωε
2

λm2uε v dx +
∫

Ωε
2

k2

ε
∇uε · ∇v dx̃ dxN

=
∫
Ω1

λm1 F v dx +
∫

Ωε
2

λm2 F v dx +
∫
Γ

gγ (v)dx̃, ∀v ∈ V ε, (3.5)

in the space V ε ≡ {v ∈ H1(Ωε): v = 0 on ∂Ω1 − Γ }. This is the exact or ε-problem to be solved, and it depends on the
thin domain Ωε

2 and the high permeability k2
ε through the scale parameter ε > 0. We expect the last term on the left side

to be approximated for small values of ε by averaging across the narrow channel,

1

ε

∫
Ωε

2

k2∇u · ∇v dxN dx̃ ≈
∫
Γ

k2∇̃u · ∇̃vω(x̃)dx̃, (3.6)

where ∇̃ denotes the gradient in the variable x̃ in Γ , and this will be established in our work below.

3.1. The scaled problem

Since our primary interest is the dependence of the solution on ε , we shall reformulate the problem in a space that is
independent of this parameter. In order to eliminate this dependence on the domain, we scale Ωε

2 in the direction normal
to Γ by xN = εz to get an equivalent problem on the domain Ω = Ω1 ∪ Γ ∪ Ω2 with Ω2 ≡ Ω1

2 = {(x̃,ω(x̃)z) ∈ R
n: (x̃, z) ∈

Γ × (0,1)}. The corresponding bilinear form is

aε(u, v) ≡
∫
Ω1

k1∇u · ∇v dx +
∫
Ω2

k2∇̃u · ∇̃v dx̃ dz +
∫
Ω2

k2

ε2
∂zu∂z v dx̃ dz. (3.7)

This form is continuous on V ≡ {v ∈ H1(Ω): v = 0 on ∂Ω1 − Γ }, and the scaled problem is

uε ∈ V :
∫
Ω1

λm1uε v dx + ε

∫
Ω2

λm2uε v dx̃ dz + aε
(
uε, v

)

=
∫
Ω1

λm1 F v dx + ε

∫
Ω2

λm2 F v dx +
∫
Γ

gγ (v)dx̃, ∀v ∈ V . (3.8)

For each ε > 0 the bilinear form (3.7) is clearly V -elliptic, so the problem (3.8) is well-posed. Moreover, the solution uε

satisfies
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λm1uε
1 − ∇ · k1∇uε

1 = λm1 F in Ω1,

uε
1 = 0 on ∂Ω1 − Γ,

uε
1 = uε

2, k1∂zuε
1 − k2

ε2
∂zuε

2 = g on Γ,

ελm2uε
2 − ∇̃ · k2∇̃uε

2 − k2

ε2
∂z∂zuε

2 = ελm2 F in Ω2,(
∇̃uε

2,
1

ε2
∂zuε

2

)
· n̂ = 0 on ∂Ω2 − Γ. (3.9)

This is the stationary form of the interface problem (1.1) after the rescaling. Here we see the role of the effective tangential
permeability k2 and the effective normal permeability k2

ε2 .

The estimates. Denote by χ j the characteristic function of Ω j , j = 1,2, and set uε ≡ uε
1
χ 1 + uε

2
χ 2. Due to the boundary

conditions of the space V , the gradient controls the entire H1(Ω) norm on V . Testing (3.8) with v = uε , we obtain

C1
(∥∥uε

1

∥∥2
0,Ω1

+ ∥∥uε
2

∥∥2
0,Ω2

)
� C2

(∥∥uε
1

∥∥2
0,Ω1

+ ∥∥∇uε
1

∥∥2
0,Ω1

+ ε
∥∥uε

2

∥∥2
0,Ω2

+ ∥∥∇̃uε
2

∥∥2
0,Ω2

+
∥∥∥∥1

ε
∂zuε

2

∥∥∥∥
2

0,Ω2

)

� ‖F‖0,Ω1

∥∥uε
1

∥∥
0,Ω1

+ ‖g‖0,Γ

∥∥uε
1

∥∥
1,Ω1

� C̃
∥∥uε

1

∥∥
1,Ω1

where C1, C2, C̃ are positive constants. It follows that

∥∥uε
1

∥∥2
0,Ω1

+ ∥∥∇uε
1

∥∥2
0,Ω1

+ ε
∥∥uε

2

∥∥2
0,Ω2

+ ∥∥∇̃uε
2

∥∥2
0,Ω2

+
∥∥∥∥1

ε
∂zuε

2

∥∥∥∥
2

0,Ω2

� C (3.10)

for some generic positive constant C .

The limit. The estimate (3.10) implies that there is a subsequence, which we denote again by {uε}, and a u∗ = u1χ 1 +
u2χ 2 ∈ V such that uε w

⇀ u∗ in H1(Ω) and strongly in L2(Ω). For any v ∈ V , as ε → 0 we have
∫
Ω1

k1∇uε
1 · ∇v dx →

∫
Ω1

k1∇u1 · ∇v dx, and

∫
Ω2

k2∇̃uε
2 · ∇̃v dx̃ dz →

∫
Ω2

k2∇̃u2 · ∇̃v dx̃ dz.

Since the right side of (3.8) is bounded for v ∈ V fixed, we conclude the existence of the limit

�(v) ≡ lim
ε↓0

∫
Ω2

k2

ε2
∂zuε

2∂z v dx̃ dz,

and due to the a priori estimates we conclude � ∈ V ′ . In addition, there must exist ζ ∈ L2(Ω2) such that ε−1∂zuε
2

w
⇀ ζ in

L2(Ω2). Also ‖∂zuε
2‖0,Ω2 � εC , so ‖∂zuε

2‖0,Ω2 → 0, and we know ∂zuε
2

w
⇀ ∂zu2 in L2(Ω2), so ∂zu2 ≡ 0 and u2 is independent

of z in Ω2. Taking the limit in (3.8), we find that u∗ = u1χ 1 + u2χ 2 satisfies

u∗ ∈ V : ∂zu2 = 0 in Ω2, and∫
Ω1

λm1u1 v dx +
∫
Ω1

k1∇u1 · ∇v dx +
∫
Ω2

k2∇̃u2 · ∇̃v dx + �(v) =
∫
Ω1

λm1 F v dx +
∫
Γ

gγ (v)dx̃, ∀v ∈ V .

(3.11)

Define now the subspace W ≡ {v ∈ V : ∂z v = 0 on Ω2}. We have shown that for some subsequence we obtain a weak

limit, uε w
⇀ u∗ in V with u∗ ∈ W , and since the linear functional �(·) vanishes on W , this limit satisfies

u∗ ∈ W :
∫

λm1u∗v dx + a0(u∗, v
) =

∫
λm1 F v dx +

∫
gγ (v)dx̃ for all v ∈ W , (3.12)
Ω1 Ω1 Γ



F. Morales, R.E. Showalter / J. Math. Anal. Appl. 365 (2010) 320–331 325
where the limit bilinear form on W is defined by

a0(u, v) ≡
∫
Ω1

k1∇u · ∇v dx +
∫
Ω2

k2∇̃u · ∇̃v dx̃ dz. (3.13)

This continuous bilinear form is W -elliptic, so we see that u∗ is the only solution and the original sequence {uε} converges
weakly to u∗ . In summary, the problem (3.12) characterizes the limit u∗ of the stationary problems (3.8).

3.2. Strong convergence

On the space V we take the scalar product

〈v, w〉 ≡
∫
Ω1

k1∇v · ∇w dx +
∫
Ω2

k2∇v · ∇w dx. (3.14)

This scalar product 〈·,·〉 is equivalent to the usual H1(Ω) scalar product, that is, the V -norm ‖v‖V ≡ 〈v, v〉1/2 is equivalent

to the H1(Ω) norm, so from the weak convergence uε w
⇀ u∗ in H1(Ω) we know

∥∥u∗∥∥
V � lim inf

ε↓0

∥∥uε
∥∥

V .

Now, for 0 < ε � 1, the solution uε of (3.8) satisfies

∥∥uε
∥∥2

V � ε

∫
Ω2

λm2
(
uε

)2
dx̃ dz + aε

(
uε, uε

) = −
∫
Ω1

λm1
(
uε

)2
dx +

∫
Ω1

λm1 F uε dx +
∫
Ω2

ελm2 F uε dx +
∫
Γ

gγ uε dx̃,

so from weak lower-semicontinuity of the first term we obtain

lim sup
ε↓0

∥∥uε
∥∥2

V � −
∫
Ω1

λm1
(
u∗)2

dx +
∫
Ω1

λm1 F u∗ dx +
∫
Γ

gγ
(
u∗)dx̃.

But with (3.12) this gives

lim sup
ε↓0

∥∥uε
∥∥2

V � a0(u∗, u∗) = ∥∥u∗∥∥2
V ,

so limε↓0 ‖uε‖V = ‖u∗‖V . Together with the weak convergence of the sequence, this implies ‖uε − u∗‖V → 0, and so we
have strong convergence uε → u∗ in H1(Ω).

An alternative system. The solution of the limiting problem can be characterized by a boundary-value problem on Ω1 and Γ .
First we rewrite (3.11). Since C∞

0 (Ω1) ⊆ V , for any ϕ ∈ C∞
0 (Ω1) we obtain∫

Ω1

λm1u1ϕ dx +
∫
Ω1

k1∇u1 · ∇ϕ dx =
∫
Ω1

λm1 Fϕ dx,

i.e., λm1u1 −∇ ·k1∇u1 = λm1 F in L2(Ω1), so k1∇u1 ∈ L2
div(Ω1) and the normal trace k1∇u1 · n̂ ∈ H−1/2(∂Ω1) is well defined.

Moreover, we know that for any v ∈ V the Stokes’ formula [15]

〈k1∇u1 · n̂, γ v〉H−1/2(∂Ω1),H1/2(∂Ω1) =
∫
Ω1

k1∇u1 · ∇v dx +
∫
Ω1

∇ · (k1∇u1)v dx

must hold. Substituting these into (3.11), we conclude

〈k1∇u1 · n̂, γ v〉H−1/2(Γ ),H1/2(Γ ) +
∫
Ω2

k2∇̃u2 · ∇̃v dx + �(v) =
∫
Γ

gγ v dx̃ for all v ∈ V . (3.15)

Since the functions in W are independent of z for (x̃, z) ∈ Ω2, we have for each pair u, v ∈ W

(u, v)H1(Ω2) =
∫
Ω2

(
u(x̃)v(x̃) + ∇u(x̃) · ∇v(x̃)

)
dx̃ dz

=
∫ (

u(x̃)v(x̃) + ∇̃u(x̃) · ∇̃v(x̃)
)
ω(x̃)dx̃.
Γ
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This is equivalent to the scalar product

(u, v)H1
ω(Γ ) ≡

∫
Γ

(
u(x̃)v(x̃) + ω(x̃)∇̃u(x̃) · ∇̃v(x̃)

)
dx̃

of the weighted Sobolev space

H1
ω(Γ ) ≡ {

u ∈ L2(Γ ): ω1/2∇̃u ∈ L2(Γ )
}
.

Furthermore, we see W is equivalent to the space

VΓ ≡ {
v ∈ H1(Ω1): v|Γ ∈ H1

ω(Γ ), v|∂Ω1−Γ = 0
}

in the sense of boundary trace. Thus, the solution of problem (3.12) is characterized by

u∗ ∈ VΓ :
∫
Ω1

λm1u∗v dx +
∫
Ω1

k1∇u∗ · ∇v dx +
∫
Γ

k2ω∇̃u∗ · ∇̃v dx̃

=
∫
Ω1

λm1 F v dx +
∫
Γ

gγ (v)dx̃ for all v ∈ VΓ , (3.16)

and this means it determines a pair u1 = χ 1u∗ ∈ H1(Ω1), u2 = γ (u∗) ∈ H1
ω(Γ ) which satisfies the system

λm1u1 − ∇ · k1∇u1 = λm1 F in Ω1, (3.17a)

u1 = 0 on ∂Ω1 − Γ, (3.17b)

u1 = u2 on Γ, and (3.17c)∫
Γ

k2ω∇̃u2 · ∇̃γ v dx̃ + 〈k1∇u1 · n̂, γ v〉H−1/2(Γ ),H1/2(Γ ) =
∫
Γ

gγ v dx̃ for all v ∈ V . (3.17d)

In the situation of Theorem 2.1, the variational identity (3.17d) is equivalent to

−∇̃ · k2ω∇̃u2 + k1∂zu1 = g in Γ, (3.17e)

u2 = 0 on ∂Γ . (3.17f)

However, in the strongly tapered case of (2.3), the last condition (3.17f) is deleted, since the trace is meaningless and
the variational equation is equivalent to Eq. (3.17e) in H1

ω(Γ )′ . See [12] for such examples. Thus, the limiting form of the
singular problem (3.8) is the elliptic boundary-value problem on Ω1 with the (non-local and possibly degenerate) elliptic
boundary constraint.

We summarize the above as follows.

Theorem 3.1. Let the regions Ωε and the rescaled Ω , the constants k1,k2,m1,m2 > 0, λ � 0, and functions F ∈ L2(Ω), g ∈ L2(Γ )

be given. Define the bilinear form (3.7) for each 0 < ε � 1 on the space V . Then each scaled problem (3.8) has a unique solution, uε ,
these satisfy the estimates (3.10) and converge strongly uε → u∗ in V , where u∗ satisfies (3.11). Finally, the limit u∗ is characterized
as the solution of the well-posed limit problem (3.12) or its equivalent form (3.16).

3.2.1. Remarks on minimization and penalty
Set f ε(v) = ∫

Ω1
λm1 F v dx + ε

∫
Ω2

λm2 F v dx + ∫
Γ

gγ (v)dx̃. Eq. (3.8) shows that uε is characterized by the minimization
of

ϕε(v) ≡ 1

2

(∫
Ω1

λm1 v2 dx +
∫
Ω2

ελm2 v2 dx + aε(v, v)

)
− f ε(v), v ∈ V .

According to (3.11), the limit u∗ satisfies

u∗ ∈ W :
∫
Ω1

λm1u∗v dx + 〈
u∗, v

〉
V + �(v) = f 0(v) for all v ∈ V

and is characterized by (3.12), that is,

u∗ ∈ W :
∫

λm1u∗v dx + 〈
u∗, v

〉
V = f 0(v) for all v ∈ W .
Ω1
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This shows that u∗ is obtained by the minimization of

ϕ(v) ≡ 1

2

(∫
Ω1

λm1 v2 dx + 〈v, v〉V

)
− f 0(v), v ∈ V , (3.18)

over the subspace W . This is the same as minimizing ϕ(v) + IW (v) over all of V , where

IW (v) ≡
{

0 if v ∈ W ,

+∞ if v /∈ W ,

is the indicator function of W .
Furthermore, if ∂ IW (·) denotes the subgradient of the convex IW (·), then � ∈ ∂ IW (u∗) is the Lagrange multiplier that

realizes the constraint u∗ ∈ W . The last term in (3.7) is the penalty term and (3.8) is a penalty method to approximate (3.12).

3.3. The concentrated capacity model

Suppose that in the interface problem (1.1), we assume that not only the permeability k2 but also m2 is scaled by 1
ε

in Ω2. Such an assumption is meaningless for porous media, since the porosity is bounded by 1, but it is appropriate
in analogous heat conduction problems with a concentrated capacity along the highly-conducting interface or boundary.
However, the problem (3.8) with the factor ε deleted from the two terms can be used as a fracture model with highly
anisotropic permeability. We include this case to show what assumptions are required to arrive at the narrow fracture
model described in [2].

Theorem 3.2. Let the region Ω , the constants k1,k2, λm1 > 0, and functions F ∈ L2(Ω), g ∈ L2(Γ ) be given. For each 0 < ε � 1,
consider the problem

uε ∈ V :
∫
Ω1

λm1uε v dx +
∫
Ω2

λm2uε v dx + aε
(
uε, v

)

=
∫
Ω1

λm1 F v dx +
∫
Ω2

λm2 F v dx +
∫
Γ

gγ (v)dx̃, ∀v ∈ V . (3.19)

This problem has a unique solution, uε , these satisfy the estimates (3.10) and converge strongly uε → u∗ in V , where the limit u∗
satisfies

u∗ ∈ W :
∫
Ω1

λm1u∗v dx +
∫
Γ

λm2ωu∗v dx̃ +
∫
Ω1

k1∇u∗ · ∇v dx +
∫
Γ

k2ω∇̃u∗ · ∇̃v dx̃

=
∫
Ω1

λm1 F v dx +
∫
Γ

λm2ω F̃ v dx̃ +
∫
Γ

gγ (v)dx̃ for all v ∈ W , (3.20)

and the channel average of F in Ω2 is given by

F̃ (x̃) = 1

ω(x̃)

ω(x̃)∫
0

F (x̃, z)dz, x̃ ∈ Γ.

Note as before that the limit u∗ ∈ VΓ determines a pair u1 ∈ H1(Ω1), u2 ∈ H1
ω(Γ ) which satisfies

λm1u1 − ∇ · k1∇u1 = λm1 F in Ω1, (3.21a)

u1 = 0 on ∂Ω1 − Γ, (3.21b)

u1 = u2 on Γ, and∫
Γ

λm2ωu2 v dx̃ +
∫
Γ

k2ω∇̃u2 · ∇̃v dx̃ + 〈k1∇u1 · n̂, γ v〉H−1/2(Γ ),H1/2(Γ )

=
∫

λm2ω F̃ v dx̃ +
∫

gγ v dx̃ for all v ∈ VΓ . (3.21c)
Γ Γ
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In the weakly tapered situation of Theorem 2.1, the variational identity is equivalent to

λm2ωu2 − ∇̃ · k2ω∇̃u2 + k1∂zu1 = λm2ω F̃ + g in Γ, (3.21d)

u2 = 0 on ∂Γ , (3.21e)

and in the strongly tapered case of (2.3), the last condition (3.21e) is deleted.

4. The evolution problems

We apply Theorem 3.1 to show the dynamics of the initial-boundary-value problem (1.1) is governed by an analytic semi-
group on the Hilbert space H = L2(Ω), and the limiting form corresponds similarly to an analytic semigroup on the Hilbert
space H0 = L2(Ω1). Then we establish the convergence as ε → 0 of solutions of the corresponding evolution problems.

4.1. Well-posed problems

Let Hε denote H with the norm ‖u‖Hε = ‖m1/2
1 χ1u + (εm2)

1/2χ2u‖L2(Ω) , so its Riesz map is the multiplication function

mε = m1χ1 + εm2χ2 from Hε to H ′
ε . Similarly, m0 = m1 is the Riesz map from H0 to H ′

0, where ‖u‖H0 = ‖m1/2
1 u‖L2(Ω1) .

Note that V ⊂ Hε and W ⊂ H0 are dense and continuous inclusions.
Define the operators Aε : Dε → H ′

ε with domains Dε ⊂ V by uε ∈ Dε and Aε(uε) = F ∈ H ′
ε if uε ∈ V : aε(uε, v) = F (v)

for all v ∈ V . Similarly the operator A0 : D0 → H ′
0 with domain D0 ⊂ W is determined by u0 ∈ D0 and A0(u0) = F ∈ H ′

0
if u0 ∈ W : a0(u0, w) = F (w) for all w ∈ W . If we set g = 0, then the scaled problem (3.8) is equivalent to Aε(uε) =
λmε(F − uε) for F ∈ H , and the limit problem (3.12) is equivalent to A0(u∗) = λm0(F − u∗) when F ∈ H0.

Each of the operators m−1
ε Aε is m-accretive on Hε , that is, ‖(I + αm−1

ε Aε)−1 F‖Hε � ‖F‖Hε for each α > 0 and F ∈ Hε .
Likewise (I +αm−1

0 A0)−1 is a contraction on H0 for each α > 0. These operators are also self-adjoint, since the correspond-

ing bilinear forms are symmetric, so m−1
ε Aε and m−1

0 A0 generate analytic semigroups on Hε and H0, respectively.
The Hille–Yoshida Theorem 2.3 shows that the corresponding initial-value problems are well-posed. Applying it to the

operator m−1
ε Aε in Hε , we obtain the scaled problem.

Theorem 4.1. For every u0 ∈ L2(Ω) and F ∈ Cβ([0,∞), L2(Ω)), there is a unique uε ∈ C([0,∞), L2(Ω))∩ C1((0,∞), L2(Ω)) with
uε(t) ∈ Dε for each t > 0 such that uε(t) = χ1uε

1(t) + χ2uε
2(t) satisfies the scaled problem

m1
∂uε

1

∂t
− ∇ · k1∇uε

1 = m1 F in Ω1,

uε
1 = 0 on ∂Ω1 − Γ,

uε
1 = uε

2, k1∂zuε
1 − k2

ε2
∂zuε

2 = 0 on Γ,

εm2
∂uε

2

∂t
− ∇̃ · k2∇̃uε

2 − k2

ε2
∂z∂zuε

2 = εm2 F in Ω2,(
k2∇̃uε

2,
k2

ε2
∂zuε

2

)
· n̂ = 0 on ∂Ω2 − Γ, (4.22a)

at each t > 0, and these satisfy the initial conditions

uε
1(·,0) = u0(·) on Ω1, uε

2(·,0) = u0(·) on Ω2. (4.22b)

Note that this is a rather strong solution, since ∇ · k j∇uε
1(t) ∈ L2(Ω j) for each t > 0, j = 1,2.

Similarly from the operator m−1
0 A0 in H0 we obtain the limiting problem. When the fracture is weakly tapered, this

takes the following form.

Theorem 4.2. For every u0 ∈ L2(Ω1) and F ∈ Cβ([0,∞), L2(Ω1)), there is a unique u∗ ∈ C([0,∞), L2(Ω1)) ∩ C1((0,∞), L2(Ω1))

with u∗(t) ∈ D0 for each t > 0, such that the functions u1(t) = u∗(t)|Ω1 ∈ H1(Ω1), u2(t) = γ (u∗(t)) ∈ H1
ω(Γ ) satisfy

m1
∂u1

∂t
− ∇ · k1∇u1 = m1 F in Ω1, (4.23a)

u1 = 0 on ∂Ω1 − Γ, (4.23b)

u1 = u2 on Γ, and (4.23c)

−∇̃ · k2ω∇̃u2 + k1∂zu1 = 0 in Γ, (4.23d)

u2 = 0 on ∂Γ, (4.23e)
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at each t > 0 and the initial condition

u1(·,0) = u0(·) on Ω1. (4.23f)

In particular, each term of Eq. (4.23a) belongs to L2(Ω1), so the solution is rather strong. As before, in the strongly
tapered case, the last condition (4.23e) is deleted.

4.2. Strong convergence

For the stationary problems, we have shown that (mε + Aε)−1mε F → (m0 + A0)−1m0 F in the V -norm, hence, in H1(Ω)

so also in H . However, for the corresponding dynamic problems, with ε > 0 we have an evolution in Hε = L2(Ω) whereas
the limit is an evolution in H0 = L2(Ω1), and these are not immediately comparable, so we shall work directly in the
corresponding evolution spaces, V ≡ L2(0, T ; V ) and W ≡ L2(0, T ; W ). The Cauchy problem leads to the Hilbert space

W 1.2(0, T ) ≡
{

u ∈ V :
du

dt
∈ V ′

}

with the norm ‖u‖W 1.2(0,T ) = (‖u‖2
V + ‖ du

dt ‖2
V ′ )1/2, and this space is contained in C([0, T ], H) with continuous imbedding,

that is,

‖u‖C([0,T ],H) � C‖u‖W 1.2(0,T ), u ∈ W 1.2(0, T ).

See any one of [1,14,15].
The solution of (4.22) satisfies

uε ∈ V: ∀v ∈ V ∩ W 1.2(0, T ; H) with v(T ) = 0,

−
T∫

0

(
mεuε(t),

dv

dt
(t)

)
L2(Ω)

dt +
T∫

0

aε
(
uε(t), v(t)

) =
T∫

0

(
mε F (t), v(t)

)
L2(Ω)

dt + (
mεu0, v(0)

)
L2(Ω)

.

This is the weak formulation of the Cauchy problem

uε ∈ V: mε
duε

dt
(·) + Aε

(
uε(·)) = mε F (·) in V ′, uε(0) = u0,

and the solution uε satisfies the identity

1

2

(
mεuε(T ), uε(T )

)
L2(Ω)

+
T∫

0

aε
(
uε(t), uε(t)

)
dt =

T∫
0

(
mε F (t), uε(t)

)
L2(Ω)

dt + 1

2
(mεu0, u0)L2(Ω). (4.24)

This implies that ‖uε‖V , ‖ 1
ε ∂zuε‖L2(0,T ;H0) are bounded, so there is a weakly convergent subsequence, uε w

⇀ u∗ in V with

limit u∗ ∈ W . Then the evolution equation shows that duε

dt

w
⇀ du∗

dt in W ′ , so we obtain

u∗ ∈ W: ∀v ∈ W ∩ W 1.2(0, T ; H0) with v(T ) = 0,

−
T∫

0

(
m0u∗(t), dv

dt
(t)

)
L2(Ω1)

dt +
T∫

0

a0(u∗(t), v(t)
) =

T∫
0

(
m0 F (t), v(t)

)
L2(Ω1)

dt + (
m0u0, v(0)

)
L2(Ω1)

.

As before, this characterizes the solution of

u∗ ∈ W: m0
du∗

dt
(·) + A0(u∗(·)) = m0 F (·) in W ′, u∗(0) = χ1u0,

which has only one solution [11], so the original sequence converges weakly to u∗ and this is also the solution of (4.23).
Moreover, we have

1

2

(
m0u∗(T ), u∗(T )

)
L2(Ω1)

+
T∫

a0(u∗(t), u∗(t)
)

dt =
T∫ (

m0 F (t), u∗(t)
)

L2(Ω1)
dt + 1

2
(m0u0, u0)L2(Ω1), (4.25)
0 0
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and this will be used to show strong convergence uε → u∗ in V . From the weak convergence, we have

T∫
0

〈
u∗(t), u∗(t)

〉
dt � lim inf

ε↓0

T∫
0

〈
uε, uε

〉
dt.

This follows since the V -norm from the scalar product (3.14) is equivalent to the H1(Ω)-norm. Also from (4.24) we have

T∫
0

〈
uε, uε

〉
dt �

T∫
0

aε
(
uε, uε

)
dt = −1

2

(
mεuε(T ), uε(T )

)
L2(Ω)

+
T∫

0

(
mε F (t), uε(t)

)
L2(Ω)

dt + 1

2
(mεu0, u0)L2(Ω).

Then using the (weak) continuity of the linear map u → u(T ) from {u ∈ W : m1/2
0

du
dt ∈ W ′} to H0, we take the lim sup

above to get

lim sup
ε↓0

T∫
0

〈
uε, uε

〉
dt � −1

2

(
m0u∗(T ), u∗(T )

)
L2(Ω1)

+
T∫

0

(
m0 F (t), u∗(t)

)
L2(Ω1)

dt + 1

2
(m0u0, u0)L2(Ω1).

Together with the limiting identity (4.25) this shows

lim sup
ε↓0

T∫
0

〈
uε, uε

〉
dt �

T∫
0

a0(u∗(t), u∗(t)
)

dt =
T∫

0

〈
u∗(t), u∗(t)

〉
dt,

so we have established limε↓0
∫ T

0 〈uε, uε〉dt = ∫ T
0 〈u∗(t), u∗(t)〉dt and, hence, strong convergence in V . Recalling that from

the evolution equation we have the strong convergence mε
duε

dt → m0
du∗
dt in W ′ , we have

Theorem 4.3. In the situation of Theorems 4.1 and 4.2, the sequence converges strongly uε → u∗ in V = L2(0, T ; V ) and in
C([0, T ], H0).

4.3. The concentrated capacity model

We obtain the analogous results for the evolution problem corresponding to Theorem 3.2. The approximation evolves in
H = L2(Ω) with the norm ‖u‖H = ‖(m1/2

1 χ1 + m1/2
2 χ2)u‖L2(Ω); its Riesz map is the multiplication function m1χ1 + m2χ2

from H to H ′ . Similarly, H0 is defined to be the closure of W in H , and as above we find it is equivalent to the weighted
L2 space with the scalar product

(u, v)L2
ω(Ω) =

∫
Ω1

m1u(x)v(x)dx +
∫
Γ

m2u(x̃)v(x̃)ω(x̃)dx̃.

Note that V ⊂ H and W ⊂ H0 are dense and continuous inclusions.
By the same arguments given previously, we obtain the following.

Theorem 4.4. For every u0 ∈ L2(Ω) and F ∈ Cβ([0,∞), L2(Ω)), there is a unique uε ∈ C([0,∞), L2(Ω))∩ C1((0,∞), L2(Ω)) with
uε(t) ∈ Dε for each t > 0 such that uε(t) = χ1uε

1(t) + χ2uε
2(t) satisfies the scaled problem

m1
∂uε

1

∂t
− ∇ · k1∇uε

1 = m1 F in Ω1,

uε
1 = 0 on ∂Ω1 − Γ,

uε
1 = uε

2, k1∂zuε
1 − k2

ε2
∂zuε

2 = 0 on Γ,

m2
∂uε

2

∂t
− ∇̃ · k2∇̃uε

2 − k2

ε2
∂z∂zuε

2 = m2 F in Ω2,(
k2∇̃uε

2,
k2

ε2
∂zuε

2

)
· n̂ = 0 on ∂Ω2 − Γ, (4.26a)

at each t > 0, and these satisfy the initial conditions

uε(·,0) = u0(·) on Ω1, uε(·,0) = u0(·) on Ω2. (4.26b)
1 2
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Also, there is a unique u∗ ∈ C([0,∞), L2(Ω)) ∩ C1((0,∞), L2(Ω)) with u∗(t) ∈ D0 for each t > 0, such that the functions u1(t) =
u∗(t)|Ω1 ∈ H1(Ω1), u2(t) = γ (u∗(t)) ∈ H1

ω(Γ ) satisfy

m1
∂u1

∂t
− ∇ · k1∇u1 = m1 F in Ω1, (4.27a)

u1 = 0 on ∂Ω1 − Γ, (4.27b)

u1 = u2 on Γ, and (4.27c)

m2ω
∂u2

∂t
− ∇̃ · k2ω∇̃u2 + k1∂zu1 = m2ω F̃ in Γ, (4.27d)

u2 = 0 on ∂Γ, (4.27e)

at each t > 0 and the initial condition

u1(·,0) = u0(·) on Ω1, u2(·,0) = ũ0(·) on Γ. (4.27f)

Finally, we have strong convergence uε → u∗ in V = L2(0, T ; V ) and in C([0, T ], H0).
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