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Abstract. A mixed formulation is introduced for the singular
problem of Darcy flow in a porous medium in a region containing a
narrow fracture or channel with width O(ε) and high permeability
O( 1

ε ). The solution converges as ε → 0 to that of Darcy flow
coupled to tangential flow on the lower-dimensional interface or
boundary.

1. Introduction

The flow of fluid through a fully-saturated porous medium is de-
scribed by the constitutive law of Darcy,

(1.1a) a(x)u(x, t) + ∇p(x, t) + g(x) = 0 ,

and the conservation law

(1.1b) c(x)
∂p(x, t)

∂t
+ ∇ · u(x, t) = F (x, t) .

Here u(x, t) is the fluid flux, p(x, t) the pressure, and g(x) is the gravity
force, the storeage rate term c(x) is (slight) compressibility and porosity
of the fluid and porous medium with sources F (x, t). The density
factor has been dropped from each term of (1.1b). The flow resistance
a(x) is fluid viscosity times the inverse of permeability of the porous
medium. The system (1.1) is supplemented with appropriate boundary
and initial conditions to make the initial-boundary-value problem [3].
The backward-difference approximation for ∂p

∂t
leads to a corresponding
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boundary-value problem for the stationary system

a(x)u(x) + ∇p(x) + g(x) = 0 ,

c(x) λ p(x) + ∇ · u(x) = F (x) ,
(1.2)

where λ = h−1 is the reciprocal of the time increment h > 0. Here we
study such a problem for which the resistance coefficient a(x) is of order
ε > 0 on a thin region with width of order ε separated from the primary
region by an interface, and we show that it is approximated for small
ε by the problem on the primary region with tangential flow on the
lower-dimensional interface. Such a situation provides a model for the
relatively fast flow through an internal fracture in the porous medium
or in a narrow channel of high permeability along a wall where the
packing of particles is inefficient. See [7, 14, 12] for further discussion
and development of such models and [2] for a model of diffusion from
an underground nuclear waste repository into surrounding geological
layers.

The convergence of the singular narrow fracture problem to that
of the interface problem has been studied before [9, 13] in the classical
variational formulation on Sobolev spaces with linear transmission con-
straints posed on the interface. The usual constraints in this classical
formulation are equality of pressures and the consequential matching
of a linear combination of normal flux and pressure from each side for
the complementary transmission condition.

We shall introduce a special mixed formulation [6, 5, 8] which permits
more general interface conditions of the form

p1 − p2 = αu1 · n

−u1 · n + u2 · n = β
∂p2

∂t

for the respective jumps in pressure and flux in (1.1). With the L2-H1

mixed formulation, which is equivalent to the classical formulation, we
can obtain the case with α = 0. With the H(div)-L2 mixed formu-
lation we can obtain the case with β = 0 which is needed here, but
this introduces substantial difficulties in the convergence analysis. The
formulation we introduce here is a combination of H(div)-L2 in the pri-
mary region and L2-H1 in the narrow channel, that is, a mixed mixed
formulation.

The mixed evolution problem [4, 10, 17, 16] is necessarily of degener-
ate type, since in the limit it becomes either elliptic (β = 0) or parabolic
(β > 0) on the interface. We use the holomorphic semigroup represen-
tation of the solution to obtain rather general conditions on the data
that yield existence of solutions and then use energy estimates of the
C0 semigroup representation to obtain the strong convergence of the
solutions. This approach also permits inclusion of the parabolic-elliptic
case of the system (1.1) with semidefinite c(x) ≥ 0.
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In the remainder of this section we describe the singular stationary
problem with ε > 0 and show that the ‘mixed mixed’ formulation
is well-posed. In Section 2 we rescale the domain to get the spaces
independent of ε and corresponding estimates on the solutions. The
limit interface problem, which is satisfied by the limit of the solutions
of the singular problems as ε → 0, is displayed in Section 3. There we
establish the convergence. In Section 4 similar results are obtained for
the corresponding evolution problems.

The Singular Problem. Vectors are denoted by boldface letters, as
are vector-valued functions and corresponding function spaces. We use
x̃ to denote a vector in IRN−1. If x ∈ IRN , then the IRN−1 × {0}
projection is identified with x̃ = (x1, x2, . . . , xN−1) so that x = (x̃, xN).

The IRN−1 gradient ∇̃ and divergence ∇̃· are denoted similarly.
Consider a domain Ωε = Ω1 ∪ Γ ∪ Ωε

2 in IRN representing a porous
medium as the union of disjoint adjacent subdomains Ω1, Ωε

2 separated
by a smooth domain Γ = ∂Ω1 ∩ ∂Ωε

2 in IRN−1. Thus, we assume the
interface Γ is flat. Denote the thin fracture domain with width ε > 0
by

Ωε
2 ≡ { (x̃, xN) : 0 < xN < ε, x̃ ∈ Γ }.

It is bounded below by Γ and above by its vertical ε-translate, Γ+ε. Let
Ω1 ⊂ IRN be a domain for which Ω1 ∩Ωε

2 = ∅ and ∂Ω1 ∩ ∂Ωε
2 = Γ, and

set Ωε = Ω1 ∪Γ∪Ωε
2. For any function on Ωε we denote its restrictions

to Ω1 and to Ωε
2 with superscripts 1 and 2, respectively.

The singular stationary problem on Ω1 ∪ Γ ∪ Ωε
2 is

a1 (x)uε,1 + ∇ pε,1 + gε(x) = 0 and(1.3a)

c1(x) λpε,1 + ∇ · uε,1 = F ε in Ω1,(1.3b)

pε,1 = 0 on ∂ Ω1 − Γ,(1.3c)

pε,1 − pε,2 = αuε,1 · n and(1.3d)

λβpε,2 − uε,1 · n + uε,2 · n = f ε
Γ on Γ,

ε a2 (x)uε,2 + ∇ pε,2 + gε(x) = 0 and(1.3e)

c2 (x) λpε,2 + ∇ · uε,2 = F ε in Ωε
2,(1.3f)

uε,2 · n = 0 on ∂Ωε
2 − Γ,(1.3g)

for the fluid pressure pε,1, pε,2 and velocity uε,1, uε,2 on the respective
domains Ω1, Ωε

2. The coefficients are a1, c1 on Ω1 and εa2, c2 on Ωε
2.

The interface conditions on Γ are that the normal fluid flux from Ω1 is
driven by the pressure difference with resistance α ≥ 0 and that fluid
is stored there at the rate β ≥ 0.

With appropriate conditions on the data, we show that as ε ↓ 0, the
solution of (1.3) converges to the solution of the interface problem on



4 FERNANDO MORALES AND R.E. SHOWALTER

the primary region, Ω1 ∪ Γ,

a1u
1 + ∇p1 + g = 0 and(1.4a)

λ c1p
1 + ∇ · u1 = F in Ω1,(1.4b)

p1 = 0 on ∂Ω1 − Γ,(1.4c)

p1 − αu1 · n = p2 on Γ,(1.4d)

a2(x̃)ũ2 + ∇̃p2 + g̃(x̃) = 0̃ and(1.4e)

λ βp2 + ∇̃ · ũ2 = fΓ + u1 · n on Γ,(1.4f)

ũ2 · ñ = 0 in H−1/2(∂Γ).(1.4g)

The two-way coupling is attained by passing the pressure p2 from Γ to
Ω1 with the Robin condition (1.4d) and the normal flux u1 ·n from Ω1

to Γ as a source in (1.4f).

The Mixed Formulation. First we show that the stationary singular
problem has a unique solution. For our weak formulation of the system
(1.3) we use the spaces

Vε ≡ {v ∈ L2(Ωε) : ∇ · v1 ∈ L2(Ω1), v1 · n|Γ ∈ L2(Γ)},
Qε ≡ {q ∈ L2(Ωε) : ∇q2 ∈ L2(Ωε

2)}

with the norms

‖v‖Vε =
(
‖v‖2

L2(Ωε) + ‖∇ · v1‖2
L2(Ω1) + ‖v1 · n‖2

L2(Γ)

)1/2

,

‖q‖Qε =
(
‖q‖2

L2(Ωε) + ‖∇q2‖2
L2(Ωε

2)

)1/2

.

The solution of the singular problem (1.3) satisfies

(1.5a) uε ∈ Vε, pε ∈ Qε :

∫
Ω1

a1u
ε · v dx−

∫
Ω1

pε∇ · v dx

+ ε

∫
Ωε

2

a2u
ε · v dx +

∫
Ωε

2

∇pε · v dx +

∫
Γ

pε,2v1 · n dS

+

∫
Γ

α(uε,1 · n)(v1 · n) dS = −
∫

Ωε

gε · v dx ,

(1.5b)

∫
Ω1

λ c1 pε q dx +

∫
Ωε

2

λ c2 pε q dx +

∫
Γ

λβpε,2q2 dS

+

∫
Ω1

∇ · uεq dx−
∫

Ωε
2

uε ·∇q dx−
∫

Γ

uε,1 · n q2 dS

=

∫
Ωε

F ε q dx +

∫
Γ

f ε
Γ q2 dS for all v ∈ Vε, q ∈ Qε.
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Remark 1.1. We have combined the H(div)-L2 mixed formulation on
Ω1 with the L2-H1 mixed formulation on Ωε

2. Each q ∈ Qε has a well-
defined trace q2|Γ ∈ H1/2(∂Ω2) and similarly each v ∈ Vε determines
a normal trace v1 · n ∈ H−1/2(∂Ω1). For each such v we additionally
require that the restriction v1 · n|Γ to functions on Γ belongs to L2(Γ).
This permits the definition of the coupling terms on Γ in (1.5). This
non-standard choice of spaces permits the more general transmission
conditions (1.3d). Moreover, there are no transmission constraints used
to couple the spaces along Γ.

Define operators Aε : Vε → Vε ′ , Bε : Vε → Qε ′ , Cε : Qε → Qε ′ by
(1.6a)

Aεu (v) =

∫
Ω1

a1u · v dx + ε

∫
Ωε

2

a2u · v dx +

∫
Γ

α(uε,1 · n)(v1 · n) dS ,

(1.6b) Bεu (q) = −
∫

Ω1

∇ · u q dx +

∫
Γ

u1 · n q2 dS +

∫
Ωε

2

u · ∇ q dx ,

(1.6c) Cεp (q) =

∫
Ω1

c1 p q dx +

∫
Ωε

2

c2 p q dx +

∫
Γ

βp2q2 dS.

Then the system (1.5) is a mixed formulation for (1.3) of the form

uε ∈ Vε, pε ∈ Qε :

Aεuε(v) + Bε ′pε (v) = −gε(v), v ∈ Vε,

−Bεuε(q) + λ Cεpε (q) = f ε(q), q ∈ Qε.

Such problems are well-posed under rather general conditions. See
[8, 6, 16].

Theorem 1.1. Assume that V and Q are Hilbert spaces and A,B, C
are continuous linear operators A : V → V′, B : V → Q′, C : Q → Q′

such that

• A is non-negative and V-coercive on KerB,
• C is non-negative, symmetric, and
• B′ is bounding, i.e., it is 1-1 and

(1.7) inf
q∈Q

sup
v∈V

|Bv(q)|
‖v‖V‖q‖Q

≥ c0 > 0.

Then for every f ∈ Q′, g ∈ V′ and λ ≥ 0 the system

u ∈ V, p ∈ Q :

Au + B′p = −g in V′,

−Bu + λ Cp = f in Q′,

(1.8)

has a unique solution, and it satisfies the estimate

(1.9) ‖u‖V + ‖p‖Q ≤ K(‖g‖V′ + ‖f‖Q′).
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In order to apply Theorem 1.1, we use the following classical result.

Lemma 1.2. There is a cε > 0 for which

(1.10) ‖∇q‖2
L2(Ωε

2) + ‖q‖2
L2(Γ) ≥ cε ‖q‖2

L2(Ωε
2)

for all q ∈ H1(Ωε
2).

(See Proposition 5.2 of [15].)

Lemma 1.3. For each ε > 0, the operator Bε satisfies the inf-sup
condition (1.7) on Vε and Qε.

Proof. Let q ∈ Qε and denote by ξ the unique solution of the mixed
problem

−∇ ·∇ξ = q1 in Ω1, ∇ξ · n = q2 on Γ, ξ = 0 on ∂Ω1 − Γ.

Set v1 = ∇ξ. Then −∇ · v1 = q1 and v1 · n = q2 on Γ with
c1‖v1‖L2

div(Ω1) ≤ ‖q1‖L2(Ω1) by the Poincaré inequality. Set v2 = ∇q2.

For v = [v1,v2] on Ωε we have v ∈ Vε and with (1.10) the estimate

Bεv(q) = −
∫

Ω1

∇ · v1 q1 dx +

∫
Γ

v1 · n q2 dS +

∫
Ωε

2

v2 · ∇q2 dx

=

∫
Ω1

|q1|2 dx +

∫
Γ

|q2|2 dx +

∫
Ωε

2

|∇q2|2 dx

≥
∫

Ω1

|q1|2 dx +
cε

2

∫
Ωε

2

|q2|2 dx +
1

2
(

∫
Γ

|q2|2 dx +

∫
Ωε

2

|∇q2|2 dx)

≥ c‖v‖V ε‖q‖Qε ,

with c0 = min(c1,
1
2
, cε

2
), and this yields the inf-sup condition (1.7). �

Theorem 1.4. Assume that 0 < ε ≤ 1, 0 ≤ λ, 0 ≤ α, 0 ≤ β,
a(·), c(·) ∈ L∞(Ωε), a(x) ≥ a∗ > 0 and c(x) ≥ 0 on Ωε, F ε ∈ L2(Ωε),
gε ∈ L2(Ωε), and f ε

Γ ∈ L2(Γ). Then the system (1.5) has a unique
solution.

We show below that the limit problem (1.4) is likewise well-posed in
a mixed formulation (1.8).

2. The Scaled Problem

By scaling Ωε
2 in the vertical direction with xN = ε z, we reformulate

the singular problem (1.5) on the domains

Ω2 ≡ { (x̃, z) : 0 < z < 1, x̃ ∈ Γ }, Ω ≡ Ω1 ∪ Γ ∪ Ω2.

These domains and the corresponding spaces

V ≡ {v ∈ L2(Ω) : ∇ · v1 ∈ L2(Ω1), v1 · n|Γ ∈ L2(Γ)},
Q ≡ {q ∈ L2(Ω) : ∇q2 ∈ L2(Ω2)}(2.1)
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are independent of ε. The norms on the spaces V and Q are given by

‖v‖V =
(
‖v‖2

L2(Ω) + ‖∇ · v1‖2
L2(Ω1) + ‖v1 · n‖2

L2(Γ)

)1/2

,

‖q‖Q =
(
‖q‖2

L2(Ω) + ‖∇q2‖2
L2(Ω2)

)1/2

.

The gradient is written as ∇ = (∇̃, ∂xN
), and it becomes (∇̃, 1

ε
∂z) on

Ω2 under the scaling above. The scaled singular problem is to find

(2.2a) uε ∈ V, pε ∈ Q :

∫
Ω1

a1u
ε · v dx −

∫
Ω1

pε ∇ · v dx

+ ε2

∫
Ω2

a2u
ε · v dx + ε

∫
Ω2

∇̃pε · ṽ dx +

∫
Ω2

∂zp
ε vN dx

+

∫
Γ

pε,2v1 · n dS +

∫
Γ

α(uε,1 · n)(v1 · n) dS

= −
∫

Ω1

gε · v dx− ε

∫
Ω2

gε · v dx

(2.2b)

∫
Ω1

λ c1 pε q dx + ε

∫
Ω2

λ c2 pε q dx +

∫
Γ

λβp2q2 dS

+

∫
Ω1

∇ ·uεq dx − ε

∫
Ω2

ũε,2 · ∇̃ q dx −
∫

Ω2

uε,2
N ∂z q dx−

∫
Γ

uε,1 ·n q2 dS

=

∫
Ω1

F ε, 1q dx + ε

∫
Ω2

F ε, 2q dx +

∫
Γ

f ε
Γ q2 dS for all v ∈ V, q ∈ Q.

Theorem 1.4 shows that the system (2.2) has a unique solution for each
ε, 0 < ε ≤ 1. This solution satisfies the equations

(2.3a) a1u
ε + ∇ pε + gε = 0 and

(2.3b) λ c1 pε + ∇ · uε = F ε in Ω1 ,

(2.3c) pε = 0 on ∂Ω1 − Γ ,

pε,1 − pε,2 = αuε,1 · n and(2.3d)

λβp2 − uε, 1 · n +
(
ε ũε,2, uε,2

N

)
· n = f ε

Γ on Γ ,(2.3e)

(2.3f) ε a2 ũε,2 + ∇̃pε + g̃ε = 0̃, ε2a2 uε,2
N + ∂zp

ε + ε gε
N = 0 and

(2.3g) ε λ c2 pε + ε ∇̃ · ũε,2 + ∂zu
ε,2
N = ε F ε in Ω2

(2.3h)
(
ε ũε,2, uε,2

N

)
· n = 0 on ∂Ω2 − Γ .
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The Estimates. We shall assume additionally that

‖F ε‖L2(Ωε) is bounded and F 1,ε w
⇀ F 1 in L2(Ω1),(2.4a)

gε w
⇀ g in L2(Ω1), g2,ε(x̃, εz)

w
⇀ g(x̃) in L2(Ω2),(2.4b)

and f ε
Γ

w
⇀ fΓ in L2(Γ).(2.4c)

Note that ε1/2F 2,ε is bounded in L2(Ω2), so εF 2,ε → 0.
Set v = uε, q = pε in (2.2) and add to obtain

(2.5) a∗(‖uε,1‖2
0, Ω1

+ ‖ εuε,2‖2
0, Ω2

) + α‖uε,1 · n‖2
L2(Γ) + λβ‖pε,2‖2

L2(Γ)

+ λ ‖ c
1/2
1 pε‖2

0, Ω1
+ λ ‖ c

1/2
2 ε1/2pε‖2

0, Ω2
=

∫
Ω1

F ε pε dx

+

∫
Ω2

εF εpε dx +

∫
Γ

f ε
Γ pε,2 dS −

∫
Ω1

gε · uε dx−
∫

Ω2

gε · εuε dx

≤ C (‖F ε ‖0, Ω + ‖f ε
Γ‖0, Γ) ‖pε‖Q + ‖gε‖0, Ω (‖uε,1‖0, Ω1 + ‖εuε,2‖0, Ω2)

The constant C is independent of ε ≤ 1. From (2.3f) we have

(2.6a) ‖∇̃pε,2‖0, Ω2 ≤ ε‖a2‖L∞(Ω2)‖ ũε,2‖0, Ω2 + ‖g̃ε‖0, Ω2 ,

(2.6b) ‖∂zp
ε,2‖0, Ω2 ≤ ε2‖a2‖L∞(Ω2)‖uε,2

N ‖0, Ω2 + ε ‖gε
N‖0, Ω2 ,

so we obtain for 0 < ε ≤ 1

(2.7) ‖∇pε,2‖0, Ω2 ≤ ‖a2‖L∞(Ω2)‖ εuε,2‖0, Ω2 + ‖gε‖0, Ω2 .

From (2.3a) we obtain

‖∇pε,1‖0, Ω1 ≤ ‖a1‖L∞(Ω1)‖uε,1‖0, Ω1 + ‖gε‖0, Ω1 .

With the boundary condition (2.3c) and the Poincaré inequality, this
shows the left side of (2.5) bounds ‖pε,1‖2

H1(Ω1). The transmission con-

dition (2.3d) and (2.7) in (1.10) show that the left side of (2.5) bounds
‖pε,2‖2

H1(Ω2). We conclude from these together with (2.6b) and (2.3b)

that each of the sequences

‖uε,1‖0, Ω1 , ‖ εuε,2‖0, Ω2 , α1/2‖uε,1 · n‖L2(Γ),(2.8)

‖ pε,1‖H1(Ω1), ‖pε,2‖H1(Ω2),

∥∥∥∥1

ε
∂zp

ε

∥∥∥∥
0, Ω2

, ‖∇ · uε,1‖L2(Ω1)(2.9)

is bounded. In L2(Ω2) we know only that the combination ∇̃ · ũε,2 +
1
ε
∂zu

ε,2
N is bounded due to (2.3g).

Remark 2.1. The preceding can be done with the boundary condition
(2.3c) replaced by a Neumann condition if the coefficient c1(·) is not
identically zero and λ > 0. This would use the following result.

Lemma 2.1. Assume the nonnegative function c1(·) is non-zero in
L∞(Ω1). There is a c > 0 for which

‖∇q‖2
L2(Ω1) + ‖c1/2

1 q‖2
L2(Ω1) ≥ c ‖q‖2

H1(Ω1)
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for q ∈ H1(Ω1).

The Weak Limits. We have bounds on uε = [uε,1, εuε,2] in V and
on pε = [pε,1, pε,2] in H1(Ω1) × H1(Ω2), hence, in Q. Therefore, there
must exist p ∈ Q, u = [u1,u2] ∈ V, η ∈ L2(Ω2) such that for some
subsequence, hereafter denoted the same, we have weak convergence

(2.10a) pε w
⇀ p in Q, strongly in L2(Ω),

(2.10b) uε,1 w
⇀ u1 in L2(Ω1) and ∇ · uε,1 w

⇀ ∇ · u1 in L2(Ω1),

(2.10c) α1/2uε,1 · n w
⇀ α1/2u1 · n in L2(Γ),

(2.10d) εuε,2 w
⇀ u2 in L2(Ω2),

(2.10e)
1

ε
∂z pε w

⇀ η, ∂z pε → 0 strongly in L2(Ω2).

In the equation (2.2b), take limits with q = εφ ∈ C∞
0 (Ω2); then from

(2.10d) we conclude 〈 ε ∂z uε,2
N , φ 〉D′(Ω2), D(Ω2) → 〈 ∂z u2

N , φ 〉D′(Ω2), D(Ω2) =
0 , so the component u2

N = u2
N(x̃) is independent of z in Ω2. Again with

εq in (2.2b) with a general q ∈ Q, take limits and use (2.10d) to con-
clude

0 = lim
ε ↓ 0

∫
Ω2

ε uε,2
N ∂z q dx =

∫
Ω2

u2
N(x̃) ∂zq(x̃, z) dx

=

∫
Γ

u2
N (x̃)

(∫ 1

0

∂z q (x̃, z) dz

)
dx̃

=

∫
Γ

u2
N (x̃) ( q (x̃, 1)− q (x̃, 0)) dx̃ .

Since this holds for all q ∈ Q, in particular with q (x̃, 0) = q|Γ = 0 and
q (x̃, 1) = q|Γ+1 = φ(x̃) for φ ∈ C∞

0 (Γ) arbitrary, we obtain u2
N = 0.

Now consider a function ṽ ∈ (C∞
0 (Ω2))

N−1, set v = (1
ε
ṽ, 0) in (2.2a)

and let ε ↓ 0 to obtain

ε

∫
Ω2

a2 (x) ũε,2 · ṽ dx +

∫
Ω2

(
∇̃pε + g̃ε

)
· ṽ dx →∫

Ω2

a2 ũ2 · ṽ dx +

∫
Ω2

(
∇̃p + g̃

)
· ṽ dx = 0 .

This holds for all ṽ ∈ (C∞
0 (Ω2))

N−1, so we conclude the lower-dimensional
Darcy-type constitutive law

a2 (x) ũ2 + ∇̃p2 + g̃ = 0̃ in Ω2 .

From (2.10e) it is clear that p2 does not depend on the variable z, i.e.
p2 = p2(x̃). Therefore if we assume

(2.11) a2 = a2(x̃), g̃ = g̃(x̃) in Ω2 ,

we conclude ũ2 = ũ2(x̃) is independent of z in Ω2.
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3. The Limit Problem

Define the subspaces

(3.1a) V0 ≡ {v ∈ V : ∂zv
2 = 0 and v2

N = 0 in Ω2}
= {[v1, ṽ2] ∈ L2(Ω1)× L2(Γ) : ∇ · v1 ∈ L2(Ω1), v1 · n ∈ L2(Γ)},

(3.1b) Q0 ≡ {q ∈ Q : ∂zq = 0 in Ω2} = {[q1, q2] ∈ L2(Ω1)×H1(Γ)}.

That is, v2 = [ṽ2(x̃), 0] when v ∈ V0 and q2 = q2(x̃) when q ∈ Q0.
If v ∈ V0 then we have [v1, 1

ε
v2] ∈ V0. Using the latter and a q ∈ Q0

as test functions in (2.2), we obtain∫
Ω1

a1u
ε · v dx −

∫
Ω1

pε ∇ · v dx + ε

∫
Ω2

a2ũ
ε,2 · ṽ dx

+

∫
Ω2

∇̃pε · ṽ dx +

∫
Γ

pε,2 v1 · n dS +

∫
Γ

α(uε,1 · n)(v1 · n) dS

= −
∫

Ω1

g · v dx−
∫

Ω2

g̃ · ṽ2dx ,

∫
Ω1

λ c1 pε q dx + ε

∫
Ω2

λ c2 pε q dx +

∫
Γ

λβpε,2q2 dS

+

∫
Ω1

∇ · uεq dx − ε

∫
Ω2

ũε,2 · ∇̃ q dx −
∫

Γ

uε,1 · n q2 dS

=

∫
Ω1

F εq dx +

∫
Ω2

ε F εq dx +

∫
Γ

f ε
Γ q2dS .

Letting ε ↓ 0 we find that the limits [uε,1, εuε,2] → u and pε → p of the
indicated subsequences are a solution of the limit problem

(3.2a) u ∈ V0, p ∈ Q0 :

∫
Ω1

a1u · v dx −
∫

Ω1

p ∇ · v dx

+

∫
Ω2

a2ũ
2 · ṽ dx +

∫
Ω2

∇̃p · ṽ dx +

∫
Γ

p2 v1 · n dS

+

∫
Γ

α(u1 · n)(v1 · n) dS = −
∫

Ω1

g · v dx−
∫

Ω2

g̃ · ṽ dx ,

(3.2b)

∫
Ω1

λ c1 p q dx +

∫
Ω1

∇ · u q dx +

∫
Γ

λβp2q2 dS

−
∫

Ω2

ũ · ∇̃ q dx −
∫

Γ

u1 · n q2 dS =

∫
Ω1

Fq dx +

∫
Γ

fΓ q2 dS

for all v ∈ V0, q ∈ Q0.
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This problem is a mixed formulation (1.8) with the operators
(3.3a)

A0u (v) =

∫
Ω1

a1(x)u ·v dx +

∫
Ω2

a2(x̃)ũ · ṽ dx+

∫
Γ

α(u1 ·n)(v1 ·n) dS ,

(3.3b) B0u (q) = −
∫

Ω1

∇ · u q dx +

∫
Ω2

ũ · ∇̃ q dx +

∫
Γ

u1 · n q2 dS ,

(3.3c) C0p (q) =

∫
Ω1

c1 p q dx +

∫
Γ

βp2q2 dS .

Surface area on Γ is dS = dx̃, and functions of x̃ can be regarded as
functions on Ω2 or Γ. Thus the second terms in A0 and B0 can be
written as integrals over Γ, namely,

∫
Γ
a2ũ · ṽ dS and

∫
Γ
ũ · ∇̃ q dS.

Note the degeneracy in C0: the c2-terms on Ω2 have vanished in the
limit. Theorem 1.1 applies to these operators on V0 and Q0. The inf-
sup condition follows from the proof of Lemma 1.3. As a consequence
of the uniqueness of the solution of the limit problem (3.2), not only
a subsequence but the original sequences [uε,1, εuε,2], pε converge as
indicated to [u1,u2], p.

We summarize the above as follows.

Theorem 3.1. Assume the conditions of Theorem 1.4 and (2.4) and
(2.11). Then the sequence [uε,1, εuε,2], pε of solutions of the correspond-
ing scaled problems (2.2) converges weakly in V × Q to the solution
[u1,u2] ∈ V0, p ∈ Q0 of the limit problem (3.2), and

pε w
⇀ p weakly in H1(Ω1)×H1(Ω2), strongly in L2(Ω).

The Strong Form. From (3.2a) we obtain (1.4a), (1.4e), and

−〈p1,v1 · n〉∂Ω1 +

∫
Γ

{p2v1 · n + α(u1 · n)(v1 · n)} dS = 0

for all v ∈ V. Note that (1.4a) shows p1 ∈ H1(Ω1), so its trace
is in H1/2(∂Ω1), and so we have (1.4d) and (1.4c). Choosing q ∈
C∞

0 (Ω1) × C∞
0 (G) in (3.2b), we first obtain (1.4b) and (1.4f). Since

∇̃ · ũ2 ∈ L2(G), the third term in (3.2b) can be rewritten

−
∫

Ω2

ũ·∇̃q dx = −
∫

Γ

ũ·∇̃q dx̃ =

∫
Γ

∇̃·ũ q dx̃− < ũ·ñ, q >∂Γ for q ∈ Q0,

so we obtain also (1.4g). Thus, the system (1.4) is the strong form of
the limit problem (3.2).

Strong Convergence. Assume additionally the strong convergence

(3.4) gε → g in L2(Ω) and f ε
Γ → fΓ in L2(Γ).
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Set v = uε, q = pε in (2.2) and add to obtain the identity

‖ a
1/2
1 uε‖2

0, Ω1
+ ε2‖ a

1/2
2 uε‖2

0, Ω2
+ α‖uε,1 · n‖2

L2(Γ) + λβ‖pε,2‖2
L2(Γ)

+ λ ‖ c
1/2
1 pε‖2

0, Ω1
+ ε λ ‖ c

1/2
2 pε‖2

0, Ω2
=

∫
Ω1

F ε pε dx

+ ε

∫
Ω2

F ε pε dx +

∫
Γ

f ε
Γ pε,2 dS −

∫
Ω1

gε · uε dx− ε

∫
Ω2

gε · uε dx

From the strong convergence of the source terms (3.4) and the strong
convergence of the sequence {pε : ε > 0} in L2(Ω), we can estimate

(3.5)

lim sup
ε→0

{‖ a
1/2
1 uε‖2

0, Ω1
+‖ a

1/2
2 εuε‖2

0, Ω2
+α‖uε,1·n‖2

L2(Γ)+λβ‖pε,2‖2
L2(Γ)}

≤ −λ ‖ c
1/2
1 p‖2

0, Ω1
+

∫
Ω1

F 1p dx +

∫
Γ

fΓ p2 dS−
∫

Ω1

g·u dx−
∫

Ω2

g̃·ũ2dx .

Set v = u, q = p in the limit problem (3.2) and add. Using the
resulting identity to evaluate the right side of (3.5), and then using the
weak lower semicontinuity of the norms, we obtain

lim sup
ε→0

{‖ a
1/2
1 uε‖2

0, Ω1
+‖ a

1/2
2 εuε‖2

0, Ω2
+α‖uε,1·n‖2

L2(Γ)+λβ‖pε,2‖2
L2(Γ)}

≤ ‖ a
1/2
1 u1‖2

0, Ω1
+ ‖ a

1/2
2 ũ2‖2

0, Ω2
+ α‖u1 · n‖2

L2(Γ) + λβ‖p2‖2
L2(Γ)

≤ lim inf
ε→0

{‖ a
1/2
1 uε‖2

0, Ω1
+‖ a

1/2
2 εuε‖2

0, Ω2
+α‖uε,1·n‖2

L2(Γ)+λβ‖pε,2‖2
L2(Γ)} .

But since these norms converge to their value at the weak limit, it
follows that the convergence is strong in the indicated norm.

Theorem 3.2. Under the assumptions of Theorem 3.1 and (3.4), we
have strong convergence

(3.6a) uε,1 → u1 in L2(Ω1), εuε,2 → u2 in L2(Ω2),

(3.6b) pε,1 → p1 in H1(Ω1), and pε,2 → p2 in H1(Ω2).

An important remark is that ‖ ε uε,2
N − u2

N ‖0, Ω2 = ‖ ε uε,2
N ‖0, Ω2 → 0

implies that we could have the normal component blowing up with the
rate ‖ uε,2

N ‖0, Ω2 ∼ ε−p, 0 < p < 1 without any contradiction. Still
we can conclude some information about the order of magnitude of
the normal component. Suppose first that u2

T 6= 0 and consider the
quotients

‖ ũε,2 ‖0, Ω2

‖uε,2
N ‖0, Ω2

=
‖ ε ũε,2 ‖0, Ω2

‖ ε uε,2
N ‖0, Ω2

>
‖u2

T ‖0, Ω2 − δ

‖ ε uε,2
N ‖0, Ω2

> 0.

The lower bound holds true for ε > 0 small enough and adequate
δ > 0 then we conclude the quotient of tangent component over normal
component L2-norms blows-up, i.e. the tangential velocity is much
faster than the normal one in the thin channel.
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If u2
T = 0 we can not conclude the same reasoning, so a further

analysis has to be made. Suppose then that the solution u, p of (3.2)
is such that u2 = 0; then (3.2b) takes the form∫

Ω1

λ c p q dx−
∫

Ω1

u·∇q dx =

∫
Ω1

F q dx +

∫
Ω2

F q dx +

∫
Γ

fΓ γ (q) dS

for all q ∈ M

and we conclude

(3.7) − 〈u · n , γ (q) 〉H−1/2(Γ),H1/2(Γ)

=

∫
Γ

( ∫ 1

0

F (x̃, z) dz

)
γ (q) dx̃ +

∫
Γ

fΓ γ (q) dx̃ ,

i.e. u · n =
(∫ 1

0
F (x̃, z) dz

)
+ fΓ. But on the other hand, if u2 = 0

then it is clearly in L2
div(Ω2) and so u ∈ L2

div(Ω). Then, in particular
it must hold u · n = u2 · n = 0 on Γ, then, if we impose the condi-

tion
(∫ 1

0
F (x̃, z) dz

)
+ fΓ 6= 0 (3.7) is impossible and ‖ ũε,2 ‖0, Ω2 �

‖uε,2
N ‖0, Ω2 for ε > 0 small enough as discussed above.

4. The evolution problems

We shall resolve the initial-boundary-value problem for the equations
(1.1) with the coefficients, interface and boundary conditions as given
above, that is, for the singular evolution system

a1 (x)uε,1 + ∇ pε,1 + gε,1(x) = 0 and(4.1a)

c1(x)
∂pε,1

∂t
+ ∇ · uε,1 = F ε in Ω1,(4.1b)

pε,1 = 0 on ∂ Ω1 − Γ,(4.1c)

pε,1 − pε,2 = αuε,1 · n and(4.1d)

β
∂pε,2

∂t
− uε,1 · n + uε,2 · n = f ε

Γ on Γ,

ε a2 (x)uε,2 + ∇ pε,2 + gε,2(x) = 0 and(4.1e)

c2 (x)
∂pε,2

∂t
+ ∇ · uε,2 = F ε in Ωε

2,(4.1f)

uε,2 · n = 0 on ∂Ωε
2 − Γ,(4.1g)

with initial conditions

c1(x)pε,1(·, 0) = c1(x)p1
0 in Ω1,(4.1h)

c2(x)pε,2(·, 0) = c2(x)p2
0 in Ωε

2,(4.1i)

βpε,2(·, 0) = βp3
0 on Γ.(4.1j)
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Since we shall describe the limit as ε → 0, we first rescale as in
Section 2 to get an evolution system in mixed form

uε(t) ∈ V, pε(t) ∈ Q :

Aεuε(t) + Bε ′pε(t) = −gε in V′,(4.2a)

−Bεuε(t) +
d

dt
Cεpε(t) = f ε(t) in Q′,(4.2b)

Cεpε(0) = Cεp0,(4.2c)

in which the spaces (2.1) are independent of ε and the operators are
chosen as for the scaled singular problem (2.2), namely,

(4.3a) Aεu (v) =

∫
Ω1

a1(x)u · v dx

+ ε2

∫
Ω2

a2(x)u · v dx +

∫
Γ

α(u1 · n)(v1 · n) dS ,

(4.3b) Bεu (q) = −
∫

Ω1

∇ · u q dx +

∫
Γ

u1 · n q2 dS

+ ε

∫
Ω2

ũ2 · ∇̃ q dx +

∫
Ω2

u2
N ∂zq dx ,

(4.3c) Cεp (q) =

∫
Ω1

c1(x) p q dx + ε

∫
Ω2

c2(x) p q dx. +

∫
Γ

βp2q2 dS .

The functionals are given by

gε(v) =

∫
Ω1

gε,1(x) · v1(x)dx + ε

∫
Ω2

gε,2(x) · v2(x)dx, v ∈ V,

f ε(t)(q) =

∫
Ω1

F ε, 1(x, t)q1(x) dx + ε

∫
Ω2

F ε, 2(x, t)q2(x) dx

+

∫
Γ

f ε
Γ(s) q2(s) dS, q ∈ Q,

where each gε,j ∈ L2(Ωj), and f ε
Γ ∈ L2(Γ); F ε will be determined below.

We shall show that the elliptic-parabolic system (4.2) is governed
by an analytic semigroup on a Hilbert space determined by Cε and
that the limiting form corresponds similarly to an analytic semigroup
which realizes an elliptic-parabolic equation in Ω1 constrained by an
elliptic equation on the part Γ of its boundary. Then we establish the
convergence as ε → 0 of these solutions of the evolution problems.
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4.1. The Scaled Problem. Assume the conditions of Theorem 1.4
on all data. Additional assumptions on F ε(t) will be prescribed below.

First we simplify the problem (4.2) by a translation. Let uε
∗, pε

∗ be
the solution of the stationary problem (2.2) with gε and f ε

Γ as given
(independent of t), F ε, 1 = F ε, 2 = 0, and λ = 0. Subtract uε

∗ from uε(t)
and pε

∗ from pε(t) to get the problem (4.2) for the differences, but with
gε = 0, f ε

Γ = 0, and initial value p0 − pε
∗.

Consider the case of β = 0. The parabolic region for the system (4.1)

is Ω0 = int{x ∈ Ω : c(x) > 0}. Then
∫

Ω0
c(x)p(x)q(x) dx is a continu-

ous scalar-product on the restrictions {q|Ω0 : q ∈ Q}, and we denote
by Qc the completion of these restrictions in that scalar-product. This
is the state space for (4.1), the weighted space L2(Ω0, c dx) with the
measure dy = c(x)dx. We let Qε

c be the space Qc with the (equivalent)
scalar product Cεp (q) for 0 < ε ≤ 1. Then we have the uniformly
bounded and dense restrictions Q → Qε

c and uniformly bounded inclu-
sions Qε ′

c ↪→ Q′.
Define the (unbounded) operator Lε on Qε

c by Lεp = f ∈ Qε
c if p ∈ Q

and there exists a u ∈ V such that Aεu + Bε ′p = 0, −Bεu = Cεf .
Then u and p are unique, and we have

(Lεp, p)Qε
c
= Cεf(p) = −Bεu(p) = −Bε ′p(u) = Aεu(u) ≥ 0,

so Lε is accretive on Qε
c. A similar calculation shows that Lε is symmet-

ric, because Aε is symmetric. Theorem 1.4 shows that

(
Aε Bε ′

−Bε Cε

)
is

onto {0} ×Qε ′
c , so I + Lε is onto Qε

c and Lε is m-accretive on Qε
c. The

evolution system (4.2) is equivalent to the initial-value problem

dpε(t)
dt

+ Lεpε(t) = (Cε)−1f ε(t), 0 < t ≤ T, pε(0) = p0 ,

in the Hilbert space Qε
c, so we get existence and uniqueness of the

solution from the Hille-Yosida-Phillips theorem. (See Theorem IX-1.19
and Theorem IX-1.27 of [11] or Theorem I.5.2 and Theorem IV.4.1 of
[15].) The case of β > 0 is similar; it follows as above but with Qc

replaced by Qc,β = Qc

⊕
L2(Γ).

Theorem 4.1. Assume the hypotheses of Theorem 1.4. Then for ev-
ery p0 ∈ Qc, T > 0, and Hölder continuous F ε ∈ C r ([0, T ], Q′

c ) for
some 0 < r < 1, there is a unique solution uε : (0, T ] → V and
pε : [0, T ] → Q with pε ∈ C ([0, T ], Qc ) ∩ C1 ((0, T ], Qc ) of the scaled
evolution problem (4.2). This solution satisfies

a1u
ε,1 + ∇ pε,1 + gε,1(x) = 0 and(4.4a)

c1
∂pε,1

∂t
+ ∇ · uε,1 = F ε,1(x, t) in Ω1 ,(4.4b)

pε,1 = 0 on ∂Ω1 − Γ ,(4.4c)
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pε,1 − pε,2 = αuε,1 · n and(4.4d)

β
∂pε,2

∂t
− uε, 1 · n +

(
ε ũε,2, uε,2

N

)
· n = f ε

Γ(s) on Γ ,(4.4e)

ε a2 ũε,2 + ∇̃pε,2 + g̃ε,2(x) = 0̃,

ε2a2 uε,2
N + ∂zp

ε,2 + ε gε,2
N (x) = 0,

(4.4f)

ε c2
∂pε,2

∂t
+ ε ∇̃ · ũε,2 + ∂zu

ε,2
N = ε F ε,2(x, t) in Ω2(4.4g)

and
(
ε ũε,2, uε,2

N

)
· n = 0 on ∂Ω2 − Γ ,(4.4h)

at each time t > 0 and the initial conditions

c1(·)pε,1(·, 0) = c1(·)p1
0(·) in Ω1 ,(4.4i)

c2(·)pε,2(·, 0) = c2(·)p2
0(·) in Ω2 ,(4.4j)

βpε,2(·, 0) = βp3
0 on Γ.(4.4k)

If p0 ∈ Q and F ε : [0, T ] → Q′
c is absolutely continuous, then pε :

[0, T ] → Qc is Lipschitz continuous and ∇ · uε,1 ∈ L∞ (0, T ; L2(Ω1) ).

The system (4.4) is the strong form of (4.2). Note that since F ε(·, t) ∈
Q′

c, necessarily F ε(x, t) = 0 wherever c(x) = 0. The last statement of
the theorem follows from the inclusion Q′

c ↪→ Q′ with unit norm and
(4.4b).

A similar construction applies to the spaces (3.1) and operators (3.3),
so we obtain the corresponding result for the limit problem

u(t) ∈ V0, p(t) ∈ Q0 :

A0u(t) + B0 ′p(t) = −g in V′
0,

−B0u(t) +
d

dt
C0p(t) = f(t) in Q′

0,

C0p(0) = C0p0.

(4.5)

Theorem 4.2. Assume the hypotheses of Theorem 1.4 and (2.11). Set
Ω1

0 = Ω0 ∩ Ω1 and define Q1
c to be the completion of the restrictions

{q|Ω1
0

: q ∈ Q0} in the scalar product
∫

Ω1
0
c1(x)p(x)q(x) dx. Then for

every p1
0 ∈ Q1

c, T > 0, and F 1 ∈ C r
(
[0, T ], Q1

c
′ )

with 0 < r < 1,
there is a unique solution u : (0, T ] → V0 and p : [0, T ] → Q0 with
p ∈ C ( [ 0, T ], Q1

c )∩C1 ( (0, T ], Q1
c ) of the limit evolution problem (4.5).

This solution satisfies

a1 (x)u1 + ∇ p1 + g1(x) = 0 and(4.6a)

c1 (x)
∂p1

∂t
+ ∇ · u1 = F 1 in Ω1,(4.6b)

p1 = 0 on ∂Ω1 − Γ,(4.6c)

p1 − αu1 · n = p2 on Γ,(4.6d)
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a2(x̃) ũ2 + ∇̃p2 + g̃2(x̃) = 0 and(4.6e)

β
∂p2

∂t
+ ∇̃ · ũ2 = fΓ + u1 · n|Γ on Γ,(4.6f)

u2 · n = 0 on ∂Ω2 − Γ(4.6g)

at each time t > 0 and the initial condition

c1(·)p1(·, 0) = c1(·)p0
1(·) on Ω1 ,(4.6h)

βp2(·, 0) = βp3
0 on Γ.(4.6i)

4.2. Convergence. Assume the situation of Theorem 4.1. By the
translation above, we reduce to the case of gε = 0 and f ε

Γ = 0, since
these functions are independent of time. Also we assume that p0 ∈ Q,
each F ε : [0, T ] → Q′

c is absolutely continuous, and

‖F ε‖L2(0,T ;Q′c), ‖
d
dt

F ε‖L1(0,T ;Q′c) are bounded,(4.7a)

F 1,ε w
⇀ F 1 in L2(0, T ; Ω1),(4.7b)

gε w
⇀ g in L2(Ω), and(4.7c)

f ε
Γ

w
⇀ fΓ in L2(Γ).(4.7d)

Theorem 4.3. Assume the conditions of Theorem 1.4, (2.4), (2.11)
and (4.7). Then the sequence uε = [uε,1, εuε,2], pε of solutions of the
corresponding scaled problems (4.4) converges weakly in V × Q to the
solution [u1,u2] ∈ V0, p ∈ Q0 of the limit problem (4.5), and

pε → p strongly in L2(0, T ; H1(Ω1))× L2(0, T ; H1(Ω2)),(4.8a)

uε → u strongly in L2(0, T ;L2(Ω1))× L2(0, T ;L2(Ω2)),(4.8b)

α1/2uε,1 · n → α1/2u1 · n strongly in L2(0, T ; L2(Γ)).(4.8c)

Proof. Test (4.2a) on uε(t) and (4.2b) on pε(t), add and integrate to
obtain∫ T

0

Aεuε(t)(uε(t)) dt+1
2
Cεpε(T )(pε(T )) =

∫ T

0

F ε(t)(pε(t)) dt+1
2
Cεp0(p0).

Since F ε ∈ L∞(0, T ; Q′
c), we find that both of sup0≤t≤T Cεpε(t)(pε(t))

and
∫ T

0
Aεuε(t)(uε(t)) dt are bounded, and this gives bounds on each of

‖uε,1‖L2(0,T ;L2(Ω1)) and ‖εuε,2‖L2(0,T ;L2(Ω2)) independent of ε > 0. From

(4.4b), the uniform bound on d
dt

Cεpε(t) in L2(0, T ; L2(Ω1)), and the inf-
sup condition on Bε, we get ‖∇·uε,1‖L2(0,T ;L2(Ω1)) and ‖uε,1·n‖L2(0,T ;L2(Γ))

bounded. The Darcy laws (4.4a) and (4.4f) imply that each of

‖∇pε,1‖L2(0,T ;L2(Ω1)), ‖∇̃pε,2‖L2(0,T ;L2(Ω2)), ‖1
ε
∂zp

ε‖L2(0,T ;L2(Ω2)),

is bounded. Finally, we use Poincaré inequality with (4.4c) and (4.4d)
to bound

‖pε,1‖L2(0,T ;H1(Ω1)), ‖pε,2‖L2(0,T ;H1(Ω2)).
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From the preceding estimates, it follows there are weakly convergent
subsequences [uε,1, εuε,2]

w
⇀ u and pε w

⇀ p in the respective spaces

V = L2(0, T ;V), Q = L2(0, T ; Q),

and ∂z pε → 0 strongly in L2(0, T ; L2(Ω2)).
Choose ϕ ∈ C∞

0 (Ω2), apply (4.2b) to q = ε ϕ and take the limit as
ε → 0 to get ∂zu

2
N = 0. Then apply it to εq2 for a general q ∈ Q

to get u2
N = 0 as before. Next apply (4.2a) to v = (1

ε
ṽ, 0) where ṽ ∈

C∞
0 (Ω2). Assume (2.11) and take the limit as ε → 0 to get ũ2 = ũ2(x̃, t)

independent of z.
The above shows and that the limits u, p belong to the corresponding

subspaces
V0 = L2(0, T ;V0), Q0 = L2(0, T ; Q0).

Since uε, pε are solutions of (4.4), they satisfy

(4.9) uε ∈ V, pε ∈ Q :∫ T

0

Aεuε(t)(v(t))dt +

∫ T

0

Bε ′pε(t)(v(t))dt−
∫ T

0

Bεuε(t)(q(t))dt

−
∫ T

0

Cεpε(t)(
dq(t)

dt
)dt =

∫ T

0

f ε(t)(q(t))dt + Cεp0(q(0))

for all v ∈ V, q ∈ Q with q ∈ H1(0, T ; Qc) and q(T ) = 0.

Let v ∈ V0 and q ∈ Q0 be given with q ∈ H1(0, T ; Q1
c) and q(T ) = 0.

Apply (4.9) to [v1, 1
ε
v2] ∈ V and q, then pass to the limit as ε → 0 to

obtain

(4.10) u ∈ V0, p ∈ Q0 :∫ T

0

A0u(t)(v(t))dt +

∫ T

0

B0 ′p(t)(v(t))dt−
∫ T

0

B0u(t)(q(t))dt

−
∫ T

0

C0p(t)(
dq(t)

dt
)dt =

∫ T

0

f 0(t)(q(t))dt + C0p0(q(0))

for all v ∈ V0, q ∈ Q0 with q ∈ H1(0, T ; Q1
c) and q(T ) = 0.

This is an equivalent weak formulation of the limit evolution system
(4.5). (See Section III.3 of [15].) We shall establish uniqueness for
(4.10), and that implies the original sequences [uε,1, εuε,2], pε converge
weakly to u, p as indicated above.

Define the continuous linear L : Q0 → Q′
0 by L(p) = −B0u ∈ Q′

0

where u ∈ V0, p ∈ Q0, A0u + B0 ′p = 0 in V′
0. The system (4.10) is

equivalent to the linear degenerate Cauchy problem

(4.11)
d

dt
C0p(t) + Lp(t) = f 0(t), 0 < t < T, C0p(0) = C0p0 .

For uniqueness of the solution it suffices by Proposition III.3.3 of
[15] to show that L is symmetric and Q0-coercive. The symmetry
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follows as before, so it remains to verify the coercivity. Denote by W0

the space V0 with the scalar product A0(·, ·) given by (3.3a). Then the
imbeddings V0 → W0 and W′

0 → V′
0 are bounded andA0 : W0 → W′

0

is the Riesz isomorphism. If L(p) = −B0u, then

(4.12) Lp(p) = A0u(u) = ‖u‖2
W0

= ‖A0u‖2
W′

0

≥ ca‖A0u‖2
V′

0
= ca‖B0 ′p‖2

V′
0
≥ ca c‖p‖2

Q0
,

where the last follows since B0 ′ is bounding. This shows that L is
Q0-coercive.

It remains to verify the strong convergence statements in (4.8). For
v ∈ V denote the (weaker) norm

(4.13) ‖v‖2 =

∫
Ω1

a1(x)|v1|2 dx +

∫
Ω2

a2(x)|v2|2 dx +

∫
Γ

α|v1 ·n|2 dS .

Then we have

‖uε‖2 =

∫ T

0

Aεuε(uε) dt =

− 1
2
Cεpε(T )(pε(T )) + 1

2
Cεp0(p0) +

∫ T

0

f ε(t)pε(t) dt

and by weak lower-semicontinuity,

lim sup
ε→0

‖uε‖2 ≤

− 1
2
C0p(T )(p(T )) + 1

2
C0p0(p0) +

∫ T

0

f 0(t)p(t) dt

=

∫ T

0

A0u(u) dt ≤ lim inf
ε→0

‖uε‖2.

Thus we have limε→0 ‖uε‖2 = ‖u‖2, and with weak convergence in the
norm (4.13) (weaker than ‖ · ‖V), we obtain strong convergence in the
norm (4.13).

Finally, from the flux convergence (4.8b) and the Darcy laws (4.4a)
and (4.4f) we have {∇pε} strongly convergent in L2(0, T ;L2(Ω)). From
the boundary condition (4.4c) and the Poincaré inequality we get the
sequence {pε,1} strongly convergent in L2(0, T ; H1(Ω1)). Then from
(4.8c) and the transmission condition (4.4d) we get (the trace of) {pε,2}
strongly convergent in L2(0, T ; L2(Γ)), hence, in L2(0, T ; H1(Ω2)).

�

References

[1] Robert A. Adams. Sobolev spaces. Academic Press [A subsidiary of Harcourt
Brace Jovanovich, Publishers], New York-London, 1975. Pure and Applied
Mathematics, Vol. 65.



20 FERNANDO MORALES AND R.E. SHOWALTER
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à travers des couches minces de conductivité élevée. J. Math. Anal. Appl.,
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[12] Vincent Martin, Jérôme Jaffré, and Jean E. Roberts. Modeling fractures
and barriers as interfaces for flow in porous media. SIAM J. Sci. Comput.,
26(5):1667–1691 (electronic), 2005.

[13] Fernando Morales and R. E. Showalter. The narrow fracture approximation
by channeled flow. J. Math. Anal. Appl., 365(1):320–331, 2010.

[14] Donald A. Nield and Adrian Bejan. Convection in porous media. Springer-
Verlag, New York, second edition, 1999.

[15] R. E. Showalter. Monotone operators in Banach space and nonlinear partial
differential equations, volume 49 of Mathematical Surveys and Monographs.
American Mathematical Society, Providence, RI, 1997.

[16] R. E. Showalter. Nonlinear degenerate evolution equations in mixed formula-
tion. SIAM J. Math. Anal., 42(5):2114–2131, 2010.

[17] Ulisse Stefanelli and Augusto Visintin. Some nonlinear evolution problems in
mixed form. Boll. Unione Mat. Ital. (9), 2(2):303–320, 2009.

[18] Roger Temam. Navier-Stokes equations, volume 2 of Studies in Mathematics
and its Applications. North-Holland Publishing Co., Amsterdam, 1979.

Department of Mathematics, Oregon State University, Corvallis,
OR 97331 - 4605

E-mail address: moralefe@math.oregonstate.edu

Department of Mathematics, Oregon State University, Corvallis,
OR 97331 - 4605

E-mail address: show@math.oregonstate.edu


