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Abstract. A new model for distributed capacitance in a conducting medium is intro-
duced as a system of local RC diffusion equations coupled by a global elliptic equation.
This model contains the local geometry of the distributed capacitors on which charge is
stored and the exchange of current flux on their interface with the medium. The resulting
degenerate initial-boundary-value problem is shown to be well posed and certain singular
limits are characterized.

1. Introduction.

Remarkable progress has been made in the fabrication and understanding of novel
materials that do not occur in nature. Investigators have fabricated artificial periodic su-
perlattices, also termed layered synthetic microstructures, consisting of alternating layers
of different semiconductors, different metals, or semiconductors and metals. The ability
to tailor the structure of materials has led to the discovery and elucidation of many new
phenomena. Multilayer structures of specific materials can be obtained directly by me-
chanical processing of macroscopic laminates. Such devices may also be synthesized by
various techniques in which the product is formed by means of “atom by atom” processes.
Such techniques include physical vapor condensation, chemical vapor deposition, and elec-
trochemical deposition [7], [11], [5], [6], [2]. A particular example is the multilayer ceramic
capacitor which is used, for example, in computer memory boards to divert spurious sig-
nals and to buffer fluctuations in the power supply. Such a capacitor is constructed in 60

to 120 layers using a ceramic such as barium titanate with a very high dielectric constant
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and a highly conductive metal such as a silver-palladium mixture. The ceramic layers are
typically 20 to 40 micrometers thick while the metal electrode layers are usually from one
to five micrometers thick [16]. Such integrated circuit and thin film technology leads to
the theory of networks with distributed components. The theory of distributed networks
is the natural setting in which to study the behavior of a system in which wavelengths of
interest are comparable to the physical dimensions of the device [10]. With advances in
technology the delay times of such a device or network become even more significant and

frequently dominate the overall performance [8], [12], [15].

We shall introduce and develop here a model for a conductor in which is imbedded a
continuous distribution of capacitance cells oriented with vertical normal direction. This is
an idealization of, for example, a multi-layered ceramic capacitor consisting of alternating
thin films of conductive and dielectric horizontal layers, as well as of a variety of materials
fabricated by intercalation techniques. Among the difficulties in constructing the model
are that the physical situation contains such a large number of individual cells or layers
of dielectric material and that these are of such a small size compared to the containing
conductor that the resulting “real” problem is extremely singular. It will certainly not be
described adequately by classical approaches in which the fine scale structure is lost in the
averaging process. The shape and configuration of these cells may influence the response of
the system, so this information should also be included in the model, at least until its effect
is understood and perhaps quantified. For the special case of a purely layered material,
the Layered Medium Equation was introduced in [3]. This was shown to arise as the limit
by homogenization of the classical but singular case of discretely layered systems. Here
we intend to include also the more general case of a distribution of flat cells of arbitrary

shape and to show these two models are consistent when the cells are uniformly oriented.

The approach we follow here is to develop a two-scale model. This takes the form of
a continuum of diffusion equations, each of which describes the conduction and storage of
charge on the micro-scale of an individual cell at a specific point in the global medium,
and a single elliptic equation which specifies the interconnection by conservation of charge
on the macro-scale of the global medium. An important aspect of this model is that it

contains the fine scale geometry of the individual capacitors as well as the current flux
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across the intricate interface by which they are connected to the global current field. In
Section 2 we derive this microstructure model of distributed capacitance, and formulate it
in a variational structure. (Such a model could certainly be obtained by homogenization
of a discrete system, but we have not addressed that question here.) The resulting initial-
boundary value problem is shown to be well posed in Section 3, and there we discuss
the regularity properties of the solution. In Section 4 we show that previously studied
models such as the Layered Medium Equation are obtained as singular limits of our micro-
structure model as the distributed capacitors are approximated by single points of charge
storage. (Of course the geometry of the distributed capacitors is lost in this limit.) The

dependence on other parameters and corresponding singular limits will also be presented.

2. Distributed Capacitance Model.

Let Q be a bounded domain in R3. For each point z € Q let there be given a bounded

_h h
202

cylindrical domain €2, in R? of the form Q, = S, x | ]. Here S, is the cross section
in R? and h > 0 is the thickness. Each such ), represents a capacitor at the point z € Q.
Denote the points of Q, by ¥ = (y,y3) with y = (y1,42) € Sz and |y3| < h/2. The
primary variables in our model are the voltage distribution wu(z,t) in the global region
and the locally distributed voltage difference U(z,y,t) across the capacitor Q, at y € S,.
Assume the vertical component of the global voltage gradient induces a current into the
(horizontally oriented) capacitor at z € Q of magnitude G(U(z,y,t) — hus(x,t)), y € Sz,
where uz denotes the derivative in the x3 (vertical) direction. That is, the capacitor is
connected to the surrounding global voltage field through a surface-distributed conductance
of magnitude G. If the distributed capacitance and conductance of the capacitor are
denoted by C' and K, respectively, and if any distributed current sources for the capacitor

are denoted by F(x,y,t), then the conservation of charge leads to the classical RC diffusion

equation at each point x € €2 given by
(2.1.a) CU, ~V, -KV,U+GU —hug)=F, ye€8,.

Thus the vertical component of the voltage gradient drives the capacitor as a distributed

source, Ghug. Similarly this voltage drop induces across the boundary of the capacitor
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in the horizontal normal direction, v, a current of magnitude hg(U(x,y,t) — hus(z,t)),

where the surface-distributed conductance g on the boundary 95, x [— gives the

2’2]

effective line-distributed conductance hg on 0S;. To see this, note that on 05, we have,

respectively,

Kaal—}-h (Ui—(uj:gu;;)) =0

in terms of the absolute voltages, UT, at y3 = :I:%. Since U = UT — U, this leads to the

boundary condition

(2.1.b) Kg—U + hg(U — huz) =0, y € 0S5z

Finally, the global current flux arises in two parts, one from the distributed voltage, u(z,t),

and the second from the vertical current exiting the capacitor at x, and this is given by

J= { ‘;|< K—ds—l—/ G (hugz — )dy>}.

Thus the conservation of charge on the global scale requires that

(2.1.c) V-7=1, e,

where f(z,t) denotes any charge sources distributed over Q. The model for conduction
in this medium is completed by a condition for current flow on the boundary, 02, for

example, in the case of a grounded boundary,

(2.1.d) u(z,t) =0, z€ed, t>0

and initial values for the charge distributions,

(2.2) CU(z,y,0) = CUy(z,y) , reQ, yes,

The system (2.1) is our distributed RC network model for distributed capacitance. It
consists of the global field equation (2.1.c) which couples the distribution of capacitors,
each of which is coupled to the vertical current field by (2.1.a) and to the horizontal current

field by (2.1.b). Note that the total charge rate of the capacitor €, is given by

%/ CUdy:/ [F + G(huz — U)] dy + hg(hug —U) ds
S, s,

0S5,
:{/ de+/ st}
Se 0Q,
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in which the function

J:{G(hU3—U)/2 at gjz(y,:l:%),yESw
g(hU,3—U) at g:(yay?))ayeasw

is the current flux across the boundary 0€2, on the top, bottom, (S;), and sides, (9S;),
respectively. Thus we have a system of partial differential equations of mixed parabolic-
elliptic type that are coupled through interfaces of both internal and boundary type.
Next we develop the variational statement of the system (2.1), a weak form of the
problem formulated in Hilbert spaces of Sobolev type. Denote by L?(Q) the space of
(equivalence classes of) Lebesgue square-integrable functions on 2, and let C5°(£2) denote
the subspace of infinitely differentiable functions with compact support. H'(Q) is the
Hilbert space of functions in L?(Q2) for which each partial derivative belongs to L2(Q). We
shall let H}(Q) be the subspace obtained as the closure in H'(Q) of C5°(€2). See [1] for
information on these Sobolev spaces. In order to prescribe a measurable family of cells,
{8z, € Q}, let Q C Q xR? be a given measurable set, and set S, = {y € R? : (z,y) € Q}.
Each S, is measurable in R? and by zero-extension we identify L?(Q) — L?(2 x R?) and

each L2(S,) — L?(R?). Thus we obtain the identification
L2(Q) {U € L2(Q, LA(R?)) : U(z) € LX(S,) , ae. x € Q} .
Hereafter we shall denote this Hilbert space with scalar-product

wom= [ {7 [ v e iy

by H = L?(Q, L?(S.)), and we shall set H, = L%(S,) for each z € Q. The state space for

our problems will be the product
H=L*Q)xH=L*(Q) x L2(Q) .

Suppose {W, : z € Q} is the collection of Sobolev spaces W, = H'(S,) so that each

W, is continuously imbedded in H,, uniformly for x € €2. It follows that the direct sum
wW=LXQW,) = {U eH:U(x)eW,, ae. z€, and / |U (@)}, do < oo}
Q
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is a Hilbert space; the product
V=H;(Q) xW

will be the energy space for our system (2.1). We shall use a variety of such subspaces
of H which can be constructed in this manner. Moreover we shall assume that each
Sz is a bounded domain in R? which lies locally on one side of its boundary, 85,, and
08, is a smooth curve in R?. We also assume the trace maps v, : W, — L?(9S,) are
uniformly bounded, so that we may define the distributed trace v(U) € L2?(Q, L%(0S;))
by v(U)(z,s) = v.U(s), s € 0S;, x € €, and so « is bounded and linear from W into
L2(Q, L2(0S,)).

In order to get the weak formulation of (2.1), suppose u, U is an appropriately smooth
solution of (2.1), multiply (2.1.a) by a corresponding ®(z,y), integrate over S, and use
(2.1.b) to obtain

]_ — —
(2.3.a) o /S {CU® + KV,U -V,®+ G(U — hug)®} dy

1 1
+ 5 g(’YU—hu;J,)'y@ds:—/ Fody .
|Sz| Jos, 22| Js,

Here we have used |Q;| = h|S;|. Similarly multiply (2.1.c) by ¢ € H}(Q) and integrate

over () to obtain

(2.3.b) /Q{ : |Sm|< - K—ds—l—/ G( hu;;—U)dy)go;;}d
=/f<pdx.
Q

Finally, we use (2.1.b) above and add (2.3.b) to the integral of (2.3.a) over Q to obtain

o [

(U@ + KV,U -V, ® + G(hus — U)(hps — ®)] dy

|2q|

+ g(huz —yU)(hgs — v®) dS} dz
1Sz| Jas,

:/Q{f(p+ﬁ/s$ﬁ’®dy}dx
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We define a generalized solution of the system (2.1) to be a pair of functions
uwe L?(0,T; Hy(Q)) , UeL*0,T;W)

with U; € L%(0,T; W') for which (2.3) holds for almost every t > 0 and every pair ¢ €
H}(Q2), ® € W. Note that we have the continuous imbeddings W C H C W'. Since
U € L*(0,T;W) and the derivative U; € L?(0,T;W'), it follows (eg., from p.176 of [4])
that after modification on a null set we have U € C(0,T;H). Thus, the initial condition

(2.2) is meaningful, and

(2.4) U@®)3 < |U0)]3 + 2/0 (U'(5),U(s)),, ds , 0<t<T.

3. The Cauchy Problem.

We shall show that the Cauchy problem for the system (2.1) constitutes a well-posed
problem in its generalized form given by (2.3). Moreover we shall show that in the case of
“f =07 the dynamics is governed by a holomorphic semigroup in the Hilbert space H.

The variational form of the problem (2.1) is given by (2.3). This can be expressed
efficiently in terms of the pair of continuous linear operators from the product spaces H

and V into their respective duals, H' and V', given by

1
(3.1.2) ea(@:/m/ CUGdyds,  i=[wU], ¢=|pd cH,
Q x Sy

(3.1.b)  Lu(@) = /Q {Nu-%ﬂr

1 - -
o /S (KV,U - V@ + G(huz — U)(hpz — @)) dy

-l-L g(hu;;—vU)(hcp;:,—v@)ds}da: , u,QeV.
Sz Jos,

Here we shall assume the coefficient functions C, k, K are given positive constants, and that

g, G are non-negative constants, although they could as well be corresponding bounded

functions. A generalized solution of (2.1) is then a pair @ = [u, U] € L2(0,T;V) for which

(3.2) %ér&(t)Jrﬁﬂ(t): F(t) in V', ae t>0.

Here we have set f = [f, F]. That (2.1) is well-posed follows directly from the results of
[13]. Specifically, we obtain the following



Theorem 1. Given f = [f, F] € L?(0,T; V') and Uy € H, there exists a unique general-
ized solution @ of (3.2) and (2.2), and it satisfies

(3.3) 1Ulleqo,21,20) + @l 2 0,73v) < Const-(||f||L2(o,T;V') + ||U0||H) :

Proof outline. We have continuous and symmetric linear operators ¢, £ on the Hilbert

spaces V C H, respectively, and the coercive-estimate
(34) €+ Lya@) > collally, , aeV

holds for some ¢y > 0. It follows directly from Section 2 of [13] and (2.4) that there exists
a unique solution of (3.2) and (2.2), and this solution satisfies (3.3). [ |

The preceding provides a generalized notion of solution of our problem under very
general conditions on the data. Clearly similar results on the well-posedness of the problem
in this setting hold also in much more general situations, e.g., of time-dependent operators
and spaces as indicated in [13]. We shall next show that the solution is very smooth when
f = 0 and, moreover, that the dynamics is governed by a holomorphic semigroup on H
with the corresponding regularizing effects of a parabolic system. To this end, we begin

with the operators £: H — H' and £ : V — V' given above and define the domain
DA)={UeW:a=[u,U] €V for some u € Hy(Q) with L& € {0} x H} .

Then the operator A : D(A) — H is given by A(U) = F € Hif U € D(A) and @ = [u, U]

as above satisfies

La(p) =£L([0,F])(¢), o=[p,PleV.
Since La() > c1]|ul|?, for some ¢; > 0, such a @ is unique.
0
Lemma. The operator A is symmetric and m-accretive in H.

Proof. With U € D(A) and 4 as above we have

(CAU,U), = £(0, AU)) (@) = Lii(iz) > 0
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so A is accretive. Furthermore, since £ and £ are symmetric, we have for any ® € D(A)

and corresponding ¢ = [, ®] € V

(CAU, ®)3 = £([0, AU]) (9) = Lu(p) = LP(i) = (cU, AD)y
so A is symmetric. Finally, note that for any o > 0 we have

(al+ L)a(@) = (Clal + AU, ®),, , UcDA), geV,

so the operator al + A arises from the corresponding of + £ : V. — V', Since this is
V-coercive for each a > 0, it follows from standard techniques, e.g., [14], that ol + A is

onto H, hence, A is m-accretive. [ |

(From the Lemma it follows that —A is the generator of a holomorphic semigroup [9]

on H. This gives the following result.

Theorem 2. Assume the sets Q = II{S, : x € Q} are given as in Section 2 with uniformly
bounded trace maps and smooth boundaries, 0S,. Let the strictly-positive constants C,
k, K, h and non-negative constants g, G be given. For each Uy € L?(Q) and Holder
continuous F : [0,T] — L?(Q) there exists a unique pair v € C((0,T],H3 (), U €
C([0,T],L*(Q)) with U € C*((0,T], L?>(Q)) which is a generalized solution of (2.1), (2.2).
In particular, they satisfy for each t > 0

(3.5.2) /Q {Wu(t)-w+ (@c' /S G(hsft) ~U®) dy

1

+ m g(hu;;(t) — 'yU(t)) ds) hpsdz =0, v € H Q) ,
T| JOS,

(3.5.b) /S CU' (1) + K, U (1) - ¥y @ + G(U (1) — hus(t))® dy

+/ hg(fyU(t)—hug(t))f)@ds:/ Fit)ody, ®eL?*(QH'(S,)) .
Sy Sz

The essential gain in regularity of Theorem 2 over Theorem 1 is that the derivative
Uy is now in C((0,T]; L*(Q)). Thus, at almost every = € 2, each term in the strong form
(2.1.a) of the equation in (3.5.b) is in L?(S,). When the data in this parabolic problem is
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appropriately smooth, we obtain a corresponding regularity result: U(z,-,t) € H%(S;) at
a.e. z € () for each ¢t € (0,7]. On the other hand, the coefficient of €5 in the flux J'is at best
in L2(Q2) because of U, so (2.1.c) holds only in the weak form (3.5.a), i.e., in H}(Q)', so
there is no corresponding regularity result for the first component. This is, of course, fully
expected, since the dynamics of this degenerate parabolic system involves only the second
component, U. Finally, we also note that the initial data in Theorem 2 is chosen from

H = L?(Q) whereas for the non-holomorphic case one would need to require Uy € D(A).

4. Limiting Cases.

Our objective here is to find the form of the problem that results from letting any one
(or more) of the parameters g, G, K increase without bound. We shall show that letting
g — oo merely leads to a problem similar to (2.1) but with (2.1.b) replaced by a Dirichlet
condition, the limiting case as G — oo is the layered medium equation [3], and the limit as
K — oo gives the reqularized layered medium equation. We shall treat these various cases
in a unified way as follows. First, multiply the relevant coefficient by 1/e and consider the
corresponding problem with generalized solution %, = [ue, Uc]. Then show @, — g in the
appropriate sense where g is the generalized solution of the limiting problem. Finally, we
shall characterize the limiting problem for each of these three cases.

The convergence results will each follow from the following.

Theorem 3. (a) Let the spaces V, H,H, functions fe L?(0,T;H), U e H,0< e <
and operators £, L be given as in Theorem 1. Thus setting V = L2(0,T;V) and B
C([0,T],H) we have for some ¢; > 0 from (2.4) and (3.4)

—

(4.1) /OT(%K + ﬁ)a(a) dt + |U(0)[2, > c1(||a||$, + |U(T)|2) . a=[wUleV.

Let L = Lo+ L£1 with each part being continuous, linear, symmetric, and non-negative;
define L. = Lo+ %El, 0 < e < 1. Then for each e, 0 < € < 1, there is a unique generalized

solution @, = [ue, U] of

(4.2) e €V : %zae + Lt =f in V'

with U.(0) = U? in H.

10



(b) Let Vo = ker(Lq) = {0 € V : £L10 = 0}, denote the closure in H of
{U : [u,U] € Vo} by Ho, and let Hy = L*(Q) x Ho. Set Vo = L?(0,T;Vy), By =
C([0,T],Ho), and define the restriction fo = f|v,. Let UQ € Ho. Then there is a unique

generalized solution g = [ug, Uy of

(43) g € Vo : %gﬂo + Lotlg = f() in Vé

with U()(O) = U(()) in 7‘[0.
(c) IfU? — U in H as € — 0, then we have the convergence . — g in V and

U. — Uy in B.

Proof. Part (a) follows directly from Theorem 1, and (b) is likewise immediately obtained
by replacing V, H,’H by the corresponding subspaces, Vj, Hy, Ho, respectively. To prove
(¢), let 1., i be the indicated solutions of (4.2) and (4.3). Applying (4.1) to the difference

U = Ue — Ug gives the estimate

T
- d e
1 (Il = oll} + [U-(T) — Up(T) 2) < / (58 + L) (e — i) (i — o) dit + U2 = US1,

(4.4)

~ d . -
= <f - (afﬁ‘ﬁo)uoaue — U0> +|U2 - Ugl3,
since L1%y = 0. Thus (by passing to a subsequence) we obtain a %, € V for which @, — %
(weakly). From (4.1) and (4.2) we find that {1£1a. (i)} is bounded, so by weak-lower-

semicontinuity there follows
[,1’(21(’(21) S lim infﬁlﬂs(ae) =0 ,
e—0

hence 41 € Vy. Furthermore we have (%E + Lo)be — (%E + Lo)uy = fo in V. Applying
(4.1) to 1, the solutions of (4.2), shows that {U.} is bounded in B and so (by passing to a
further subsequence) we have U (0) — U;(0) in Hg, hence Uy (0) = U. But by uniqueness
we have then 4, = g, and then from (4.4) we get 4 — @g in V and U, — Uy in B as
desired.

We shall apply Theorem 3 to characterize the limiting form of our problem (2.1) as
the coefficients g, G or K increase without bound. For the first case we set (cf. (3.1.b))

o 1 o
£i@) = [ [ty —aV) s 1@y dsde . apev
Q T S,
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and then let Lo = £ — £1. Thus (4.2) is the generalized form of problem (2.1) with g
replaced by % g, and according to Theorem 3 its solution converges as ¢ — 0 to the solution

of (4.3). In this case we have V =V, where
V, = {u = [w,U] €V :qU = huz in L2(Q,L2(8Sw))} ,

and from calculations as in Section 2 we find that (4.3) is the weak formulation of (2.1)

with (2.1.b) replaced by the Dirichlet condition
(2.1.b") U(z,y) = hus(z) , ye oSy, x €.

This limiting problem (2.1') is the matched model in which the distributed voltage dif-
ferences, yU, on the capacitor boundaries are in perfect contact with the global voltage
vertical gradient, huz. Theorem 3 gives a quantitative statement of the dependence of this
model on a finite conductance between the boundary differences and the vertical gradient
of voltage.

Next we consider the case of increasing GG. For this we define

. 1 .
L',lu((,o):/QIQ |/S G(hus —U)(hps — ®)dy dx , u,p eV,

and let Lo = L —L;, where L is given as before by (3.1.b). Thus (4.2) corresponds to (2.1)
with G replaced by éG. Here we have Vy = Vg with

Vo = {a: [u, U €V :U = hug in L2(Q,L2(5m))} :

hence, Vg = H}(Q). From (2.3) we find that (4.3) gives a generalized solution of

uwe L*(0,T;H)(Q) , use H'(0,T;L*(Q))

e 2 ) - 2 L
\Y4 {kVu+|Sw|/SmC’dy 8t(hu3)}_f 925 154 SmF(,y)dy.

This is the layered medium equation [3], and Theorem 3 shows that it is obtained in the

(4.5)

limit from (2.1) by letting G (more precisely, 1G) — oo.

Finally, we consider the case of K — oo. For this we define
]_ =3 —
Laii() = / —/ (K- V)V, U-¥,0dyde, a,peV
o Q4| Js,
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and Lo = L — L; as before. The kernel of £; consists of those members of W which are

independent of y, so Vp = Vi,
Vk ={u=[u,UleV:U(z,y) =v(z), ae (z,9)€Q},

hence, Vi =2 HJ(2) x L?(Q). From (2.3) we find that (4.3) is the weak formulation of the

system

uwe L*(0,T;Hy(Q) , veHY(0,T;L%(Q),

(4.6.a) —6-{ 5. |</ Gdy+[9$mhgds>(hu3—v)}:f,
wo0) (157 [0m) 5 + sy ([ [ hots) o= g [ 7

According to Theorem 3, the solution of (2.1) converges to that of (4.6) as K — oco. By

eliminating v from this system in the wuniform case of S, = S, x € (), we obtain the
reqularized layered medium equation [12]

an ¢ (83hU3 +

V-kVu+ f)—I—V kVu——f+83(—/de)
ot g 1S Js

1
g
in which g = ﬁ( J sGdy + fas hgds) is the total conductance between each capacitor
and the enclosing conducting field. It follows by similar arguments that the solution of

(4.7) converges to that of (4.5) as § — oo; this convergence and its consequences for the

propogation of singularities in initial data are studied in [12].
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