
The Periodic Boundary-Value Problem

Denote the unit cube in IRN by Q ≡ (0, 1)N . Let a(·) ∈ L∞(Q) be
uniformly positive: a(x) ≥ a0 > 0, x ∈ Q.
Consider the periodic boundary-value problem

−∇·a(x)∇u(x) = F (x), x ∈ Q, (1a)

u|xj=0 = u|xj=1 and (1b)

(a
∂u

∂xj
)|xj=0 = (a

∂u

∂xj
)|xj=1 on ∂Q, 1 ≤ j ≤ N. (1c)

These are precisely the boundary conditions that imply that the solution
u and the flux a∇u · n are continuous when u is Q-periodically extended
to IRN .

The Weak Solution

Set V = {v ∈ H1(Q) : v|xj=0 = v|xj=1 on ∂Q, 1 ≤ j ≤ N}.
If u is a solution of (1), then u ∈ V and for each v ∈ V we have∫

Q

F (x)v(x) dx =

∫
Q

a(x)∇u(x) · ∇v(x) dx−
∫

∂Q

a∇u · nv dS

=

∫
Q

a(x)∇u(x)·∇v(x) dx−
j=N∑
j=1

∫
∂Qj

(
(a

∂u

∂xj
v)|xj=1 − (a

∂u

∂xj
v)|xj=0

)
dS ,

where ∂Qj = {s = (s1, ..., sN) ∈ ∂Q : sj = 0}. This last sum is zero
because of the boundary conditions, so we obtain

u ∈ V :

∫
Q

a(x)∇u(x) · ∇v(x) dx =

∫
Q

F (x)v(x) dx for all v ∈ V. (2)

Conversely, we can show that any appropriately smooth solution of (2) is
a solution of (1).

1



Notes

• Any two solutions of (2) differ by a constant in V , so we have unique-
ness only up to constants.

• By taking v(x) = 1 in (2) we find a necessary condition for existence
of a solution: ∫

Q

F (x) dx = 0 . (3)

It is clear that the constant functions in V play a prominent role here.
Uniqueness holds up to them, and the data F (·) must be L2-orthogonal
to them.

Hereafter we assume that (3) holds. We define the subspace V0 = {v ∈
V :

∫
Q v(x) dx = 0}. These are the functions of V with mean-value equal

to zero. Then (2) is equivalent to

ũ ∈ V0 :

∫
Q

a(x)∇ũ(x) · ∇v(x) dx =

∫
Q

F (x)v(x) dx for all v ∈ V0. (4)

where ũ(x) = u(x) −
∫

Q u(y) dy. Thus we obtain an alternative weak
formulation for which we have uniqueness. What remains is to show that
the scalar product

∫
Q∇u(x) · ∇v(x) dx is equivalent to the H1(Q)-scalar

product on V0.

The Estimate

We want to show that the gradient and the mean-value of a function
provide a bound on the mean-square of the function.

Let v ∈ H1(Q) and x, y ∈ Q. By integrating along a path piecewise
parallel to the axes, we obtain

v(x)− v(y) =
j=N∑
j=1

(v(y1, ..., yj−1, yj, xj+1, ...xN)− v(y1, ..., yj−1, xj, xj+1, ...xN)) =

j=N∑
j=1

∫ yj

xj

∂jv(y1, ..., yj−1, s, xj+1, ...xN) ds .
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Square both sides to get the estimate

v2(x) + v2(y)− 2v(x)v(y) ≤ N

j=N∑
j=1

∫ 1

0
(∂jv)2(y1, ..., yj−1, s, xj+1, ...xN) ds ,

and integrate this with respect to x and then to y to obtain

2‖v‖2
L2(Q) − 2

(∫
Q

v(x) dx

)2

≤ N

j=N∑
j=1

‖∂jv‖2
L2(Q) ,

that is,

‖v‖2
L2(Q) ≤

(∫
Q

v(x) dx

)2

+
N

2
‖∇v‖2

L2(Q) .

This shows that
(
‖∇v‖2

L2(Q) + (
∫

Q v)2
)1/2

is equivalent to the usual norm

on H1(Q).

Summary

• The equations (1) are the strong form and (2) is equivalent to (4),
the weak form of the periodic boundary-value problem.

• The scalar product (∇u, ∇v)L2(Q) is equivalent to the H1(Q) scalar
product on V0.

Theorem 0.1 Assume a(·) ∈ L∞(Q) is uniformly positive, a(x) ≥ a0 >

0, x ∈ Q and that
∫

Q F (x) dx = 0. Then the periodic boundary-value
problem (4) has a unique solution. That is, there exists a solution of (2),
and any two solutions of (2) differ by a constant.
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