The Periodic Boundary-Value Problem

Denote the unit cube in \mathbb{R}^{N} by $Q \equiv(0,1)^{N}$. Let $a(\cdot) \in L^{\infty}(Q)$ be uniformly positive: $a(x) \geq a_{0}>0, x \in Q$.
Consider the periodic boundary-value problem

$$
\begin{align*}
-\nabla \cdot a(x) \nabla u(x) & =F(x), \quad x \in Q \tag{1a}\\
\left.u\right|_{x_{j}=0} & =\left.u\right|_{x_{j}=1} \text { and } \tag{1b}\\
\left.\left(a \frac{\partial u}{\partial x_{j}}\right)\right|_{x_{j}=0} & =\left.\left(a \frac{\partial u}{\partial x_{j}}\right)\right|_{x_{j}=1} \text { on } \partial Q, 1 \leq j \leq N \tag{1c}
\end{align*}
$$

These are precisely the boundary conditions that imply that the solution u and the flux $a \nabla u \cdot \mathbf{n}$ are continuous when u is Q-periodically extended to \mathbb{R}^{N}.

The Weak Solution

Set $V=\left\{v \in H^{1}(Q):\left.v\right|_{x_{j}=0}=\left.v\right|_{x_{j}=1}\right.$ on $\left.\partial Q, 1 \leq j \leq N\right\}$.
If u is a solution of (1), then $u \in V$ and for each $v \in V$ we have

$$
\begin{aligned}
& \int_{Q} F(x) v(x) d x=\int_{Q} a(x) \nabla u(x) \cdot \nabla v(x) d x-\int_{\partial Q} a \nabla u \cdot \mathbf{n} v d S \\
= & \int_{Q} a(x) \nabla u(x) \cdot \nabla v(x) d x-\sum_{j=1}^{j=N} \int_{\partial Q_{j}}\left(\left.\left(a \frac{\partial u}{\partial x_{j}} v\right)\right|_{x_{j}=1}-\left.\left(a \frac{\partial u}{\partial x_{j}} v\right)\right|_{x_{j}=0}\right) d S,
\end{aligned}
$$

where $\partial Q_{j}=\left\{s=\left(s_{1}, \ldots, s_{N}\right) \in \partial Q: s_{j}=0\right\}$. This last sum is zero because of the boundary conditions, so we obtain

$$
\begin{equation*}
u \in V: \quad \int_{Q} a(x) \nabla u(x) \cdot \nabla v(x) d x=\int_{Q} F(x) v(x) d x \text { for all } v \in V . \tag{2}
\end{equation*}
$$

Conversely, we can show that any appropriately smooth solution of (2) is a solution of (1).

Notes

- Any two solutions of (2) differ by a constant in V, so we have uniqueness only up to constants.
- By taking $v(x)=1$ in (2) we find a necessary condition for existence of a solution:

$$
\begin{equation*}
\int_{Q} F(x) d x=0 \tag{3}
\end{equation*}
$$

It is clear that the constant functions in V play a prominent role here. Uniqueness holds up to them, and the data $F(\cdot)$ must be L^{2}-orthogonal to them.

Hereafter we assume that (3) holds. We define the subspace $V_{0}=\{v \in$ $\left.V: \int_{Q} v(x) d x=0\right\}$. These are the functions of V with mean-value equal to zero. Then (2) is equivalent to

$$
\begin{equation*}
\tilde{u} \in V_{0}: \quad \int_{Q} a(x) \nabla \tilde{u}(x) \cdot \nabla v(x) d x=\int_{Q} F(x) v(x) d x \text { for all } v \in V_{0} . \tag{4}
\end{equation*}
$$

where $\tilde{u}(x)=u(x)-\int_{Q} u(y) d y$. Thus we obtain an alternative weak formulation for which we have uniqueness. What remains is to show that the scalar product $\int_{Q} \nabla u(x) \cdot \nabla v(x) d x$ is equivalent to the $H^{1}(Q)$-scalar product on V_{0}.

The Estimate

We want to show that the gradient and the mean-value of a function provide a bound on the mean-square of the function.

Let $v \in H^{1}(Q)$ and $x, y \in Q$. By integrating along a path piecewise parallel to the axes, we obtain

$$
\begin{aligned}
& v(x)-v(y)= \\
& \sum_{j=1}^{j=N}\left(v\left(y_{1}, \ldots, y_{j-1}, y_{j}, x_{j+1}, \ldots x_{N}\right)-v\left(y_{1}, \ldots, y_{j-1}, x_{j}, x_{j+1}, \ldots x_{N}\right)\right)= \\
& \sum_{j=1}^{j=N} \int_{x_{j}}^{y_{j}} \partial_{j} v\left(y_{1}, \ldots, y_{j-1}, s, x_{j+1}, \ldots x_{N}\right) d s
\end{aligned}
$$

Square both sides to get the estimate
$v^{2}(x)+v^{2}(y)-2 v(x) v(y) \leq N \sum_{j=1}^{j=N} \int_{0}^{1}\left(\partial_{j} v\right)^{2}\left(y_{1}, \ldots, y_{j-1}, s, x_{j+1}, \ldots x_{N}\right) d s$,
and integrate this with respect to x and then to y to obtain

$$
2\|v\|_{L^{2}(Q)}^{2}-2\left(\int_{Q} v(x) d x\right)^{2} \leq N \sum_{j=1}^{j=N}\left\|\partial_{j} v\right\|_{L^{2}(Q)}^{2}
$$

that is,

$$
\|v\|_{L^{2}(Q)}^{2} \leq\left(\int_{Q} v(x) d x\right)^{2}+\frac{N}{2}\|\nabla v\|_{L^{2}(Q)}^{2} .
$$

This shows that $\left(\|\nabla v\|_{L^{2}(Q)}^{2}+\left(\int_{Q} v\right)^{2}\right)^{1 / 2}$ is equivalent to the usual norm on $H^{1}(Q)$.

Summary

- The equations (1) are the strong form and (2) is equivalent to (4), the weak form of the periodic boundary-value problem.
- The scalar product $(\nabla u, \nabla v)_{L^{2}(Q)}$ is equivalent to the $H^{1}(Q)$ scalar product on V_{0}.

Theorem 0.1 Assume $a(\cdot) \in L^{\infty}(Q)$ is uniformly positive, $a(x) \geq a_{0}>$ $0, x \in Q$ and that $\int_{Q} F(x) d x=0$. Then the periodic boundary-value problem (4) has a unique solution. That is, there exists a solution of (2), and any two solutions of (2) differ by a constant.

