
Flow in Porous Media

A porous medium Ω in IR3 is filled with a fluid, and this fluid is driven from loca-
tions of higher pressure to those of lower pressure. In order to model this situation, let
p(x, t) denote the pressure of fluid at the point x ∈ Ω and time t > 0, and denote the
corresponding density of fluid by ρ(x, t). The quantity of fluid in each small element of
volume V is

∫
V

φ(x)ρ(x, t) dx, where the porosity φ(x) of the medium at the point x is
the volume fraction of the medium that is accessible to the fluid. The fluid flux is the
mass flow rate q(x, t), so the rate at which fluid moves across a surface element S with
normal n is given by

∫
S
q(x, t) · n dS. Then the conservation of fluid mass takes the

integral form

∂
∂t

∫
B

φ(x)ρ(x, t) dx +

∫
∂B

q · n dS =

∫
B

F (x, t) dx , B ⊂ Ω ,

in which F (x, t) denotes any volume distributed source density . When the flux and
density are differentiable, we can write this conservation law in the differential form

(0.1a) ∂
∂t

φ(x)ρ(x, t) + ∇ · q(x, t) = F (x, t) , x ∈ Ω .

The fluid flux is given by q(x, t) = ρ(x, t)v(x, t), where the volumetric flow rate of
fluid or Darcy velocity v(x, t) depends on the pressure gradient through the constitutive
relationship

(0.1b) v(x, t) = −k(x)

µ
(∇p(x, t)− ρ(x, t)g(x)) .

This is Darcy’s law for an isotropic medium. The constant µ is the viscosity of the
fluid, and this equation defines the permeability k(x) of the porous medium. The value
of k is a measure of the volume-averaged velocity of fluid flow through the medium
generated by a given pressure gradient. That is, µ/k is the resistance of the medium to
flow. The vector g is the gravitational force, usually taken as −ge3. Finally, the type of
fluid considered is described by an equation of state, ρ = s(p). The function s(·) which
relates the pressure and density is monotone, in fact, it is usually chosen to be strictly
increasing. By substituting the appropriate quantities above we obtain the nonlinear
parabolic equation

(0.2) ∂
∂t

φ(x)ρ(x, t)−∇ · k(x)

µ

(
ρ(x, t)∇p(x, t)− ρ2(x, t)g(x)

)
= F (x, t) , x ∈ Ω, t > 0 .

The simplest situation for the description of fluid flow is that of a slightly compressible
fluid. Here the equation of state has the form s(p) = ρ0 exp c0 p where c0 > 0 is the
compressibility of the fluid. Thus, the compressibility is constant: c0 = 1

ρ
dρ
dp

. Then we

approximate ρ2 ≈ ρ2
0 + 2ρ0(ρ − ρ0) = ρ0(2ρ − ρ0) so that (0.2) simplifies to the linear

parabolic equation for density

(0.3) ∂
∂t

φ(x)ρ(x, t)−∇ · k(x)

c0µ
(∇ρ(x, t)− g(x)(ρ0(2ρ− ρ0))) = F (x, t) .
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Alternatively, if we linearize the state equation by ρ ≈ ρ0(1 + c0p) and ρ ≈ ρ0, we
obtain the linear parabolic equation for pressure

(0.4) ∂
∂t

φ(x)ρ0c0p(x, t)−∇ · k(x)

µ

(
ρ0∇p(x, t)− g(x)(ρ2

0 + 2ρ0c0p(x, t))
)

= F (x, t) .


