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Ulrich HORNUNG
Fak. f. Informatik, UniBwM
D-85577 Neubiberg, Germany

ulrich@informatik.unibw-muenchen.de

Ralph E. SHOWALTER
Department of Mathematics
The University of Texas
Austin, TX 78712 U.S.A.

show@math.utexas.edu

Visintin A. (Ed.) “Models of Hysteresis. Proceedings of the Conference at
CIRM, Trento 1991”7, Longman, to appear
Copyright (©) by Longman

Abstract

A general parabolic equation of the form of the porous media equation is
considered with nonlinear boundary conditions that model hysteresis phenom-
ena. Conditions of this type describe certain adsorption processes in porous
media. Several examples are given and numerical results are shown.
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1 The Problem

Let a bounded domain €2 in R™ with smooth boundary I' be given. We assume that
I' =TI'pUTI'y and denote the outer normal vector on 'y by v. Then we study the
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Figure 1: Graph of ¢

following initial boundary value problem for functions « on 2 and v, w on I'y.

Oa(u) —Au s f t>0,2€Q (a)

Ow+du=g, webv) t>0, zel'y (b

dyu € c(v—u) t>0, zel'g (¢ (1)
u=up t>0, zel'p (d)

a(u) = ay t=0, 2€Q

w=wy t=0,z€ely

Here, the following functions are given: f on [0,7] x €, g on [0,T] x 'y, up on
[0,T]x 'p, ar on Q, and wy on ['p.

Each of a(.), b(.), and ¢(.) is a maximal monotone graph in R?, see [5]. The
special interest in problem (1) is motivated by the fact that the two conditions (1b,c)
on 'y may model hysleresis phenomena on the boundary. Specifically, consider the
maximal monotone graph in R? given by

{-1}, z<0
sgn (2) =< [—-1,1], 2=0
{1}, z>0

and its inverse
(—00,0], z=-1
sgn ~'(z) =<¢ {0}, -l1<z<1
[0,00), 2z=1

If we choose ¢(z) = sgn ~'(%) (figure 1 shows ¢ with § = 1), then the condition
(1c) becomes a constraint for v, namely

u—6<v<u+s, (2)



and also for d,u, namely

<0, v=u—94
d,u =0, u—-d<v<u+é
>0, v=u+$6

If b and b~! are functions, one can rewrite this as

<0, w=>b(u-9J)
dou =0, blu—90)<w<blutd)
>0, w=>b(u+9)

The condition (1b) is an ordinary differential equation for w; for the choice g = 0
the variable w remains constant as long as the constraint (2) is strictly satisfied. If
the constraint is active, then J,u - the control - and w are selected such that via
condition (1b) the corresponding equality in (2) is maintained. Therefore, one gets

b(u—6) <w < b(u+9). (3)

Thus the relationship between u and w € b(v) is an example of a generalized play,
see [10] [11] (figure 4). In this case, the function b prescribes the general shape of a
loop in the u — w-plane, and the number § its width the wu-direction. On the right
hand boundary of the loop the path is always directed upwards, and on the left
hand boundary the path is always directed downwards. As soon as the variation
of u leads into the interior of the loop, the value of w remains constant until the
boundary is reached again.
Furthermore, if b is a multiple of the signum function

b=~ sgn,

then conditions (1b,c) model a perfect relay, see [10] [11] (figure 6). One may consider
this case as a degenerate play. As in the previous case, in the interior of the loop all
lines are horizontal, whereas on the boundary of the loop one may distinguish the
following situations: on the upper and lower part w is constant and the normal flux
is zero, i.e., u satisfies a unilateral boundary condition; on the right and left part u
is constant, i.e., it satisfies a Dirichlet condition, and w is governed by an ordinary
differential equation.

System (1) consists of a general porous media equation (la) - which becomes
degenerate whenever a(u) vanishes - in the interior of € subject to a nonlinear
dynamic Neumann condition (1b,c) on the boundary I'y and a Dirichlet condition
(1d) on I'p. The variable w is the internal state of the hysteron, v — u is the order
parameter, and u is the external input.

A rather remarkable variety of boundary conditions can be obtained from (1b,c).
For example, if b = 0 we have an explicit Neumann boundary condition, and if ¢ = 0 it



is homogeneous. (Clearly any general solvability results cannot allow simultaneously
¢ =b=0, for this forces g = 0.) If 5(0) = R (i.e., b= = 0), then v = 0 and we have
a nonlinear Neumann constraint, and if in addition

o(z) = 0, z2<0
] [0,00), 2=0 "
it is the Signorini condition
u>0, du>0, ud,u=0.

If ¢(0) = R we get v = w on I' and this satisfies a nonlinear dynamic boundary
condition

Ob(u)+du>yg

of Neumann type. If 5(0) = ¢(0) = R we have the homogeneous Dirichlet boundary
condition. If both b=! and c are functions, one gets a nonlinear adsorption condition
of the form

Ow+du=g, d,u=c(b™ (w)—u).

For previous work on some of these various classes, we refer to [2] [4] [6].

Theoretical results for the problem (1) are given in the paper [8]. There well-
posedness for the corresponding stationary and the evolution problem are proved
using methods that had previously been developed in [12]. In this paper we con-
centrate on special examples and their numerical solution. Papers that deal with
problems closely related to those of the present paper are [1] [9] [13] [14] [15] where
parabolic problems with a hysteresis source term are studied.

Adsorption in porous media may be governed by conditions on the surfaces of
the solid material that are of hysteresis type (see [3] pp 357 ff. where experimental
evidence for hysteresis in adsorption processes is described). In that case w is the
concentration of a chemical species that is dissolved in the fluid occupying the pores,
and w is its concentration on the surfaces once it has been adsorbed. Usually, one
assumes that on the pore scale the adsorption rate - given as the normal flux in
the Neumann boundary condition for the diffusion-convection process in the fluid
- is a prescribed function of w and/or w on the boundary. But here we make the
assumption that adsoprtion takes place only if the concentration u exceeds certain
thresholds and that the range of the concentration w is bounded. In this way, one
gets hysteresis phenomenona of the kind discussed in this paper. In [7] this idea is
applied to homogenization of reactive transport through porous media.

2 Numerical Examples

We consider a y-multiple of the signum function

b=~ sgn



Figure 2: Graph of b, with € = 0.1

(¢ = 0) or a smooth approximation thereof, namely

z
be(z) =y———

(&) =777
(figure 2 shows b, with v = % and £ = 0.1), and the inverse of the scaled signum
function

(=) = sen 7' (3)

(see figure 1). For the following examples we simplify by using a(u) = u, and
f,9 = 0. We are going to use the function

h(t) = a2”? sin (27wt)

several times. For the examples we have chosen v = % and § = 1. The initial values
are all zero in the examples. As a numerical method we have used the standard
time-explicit difference scheme with constant step-sizes in x and t.

1. As a one-dimensional example, let Q = (0,1), 'y = {0}, 'p = {1}. We
assume up(t) = h(t) with a =4, 8 = 10, and w = L. We have used step
sizes Az = 0.02 and At = 8-107°. Figures 3 and 5 show u and w at = = 1
as functions of time with ¢ = 0.1, 0.0, resp.; the dotted line is the function h.
Figures 4 and 6 show w versus u; the oblique lines that cut the corners are
due to the discretization of time. Figure 4 shows the typical form of a play,
whereas figure 6 has the form of a perfect relay. The fact that the boundary of
the loops differ in both cases can be seen in figures 4 and 6 and also in figures
3 and 5. Not only has w upper and lower bounds, but the change between

the regime —§ < w < ¢ and w = —4 or w = § is abrupt for ¢ = 0. Therefore
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Figure 3: v and w as functions of ¢ at # = 1 for example 1 withe =0.1. v atz =1
: solid line, w at 2 = 0 : dotted line, w at x = 1 : dashed line.

the curves in figure 5 have sharp corners. In this sense, a relay is a degenerate
case. On the other hand, a comparison of figures 3 and 5 shows that the relay
(¢ = 0) can be approximated by a play (¢ small) quite well.

2. The following is an example in 2D. We take Q = {(z1,22) : 0 < 21,22 < 1}
as the unit square in R%. Here we assume I'p = {(z1,22): 21 =0or z; = 1}
and 'y = {(21,22) : 22 =0 or z3 = 1}. We assume

. h(t), T = 0
up(t, @) = { _h(t), @ =1

for x € I'p with o = 4, § = 2, and w = 1. We have used step sizes Az =
0.03125 and At = 5-1075. Figure 7 shows the profile of the solution « at time
t = 1.25 with £ = 0.

3. For another example in 2D we take again Q = {(z1,22) : 0 < 21,22 < 1}.
Now we assume I'p = {(z1,22) : 21 =0} and 'y = 9Q\I'p as in the previous
example. Again we assume up(t) = h(t) for € I'p with the same parameters
as in example 2. Figure 8 shows the profile of the solution u at time ¢t = 1.25
with € = 0.1. As for the one-dimensional examples, one sees easily that there is
a similarity and a difference between the two cases ¢ > 0 and ¢ = 0: Obvoiusly,
the first case is an approximation of the latter. But for € = 0 there is a range
of points on the boundary where wu is constant; here u equals to the threshold
values 4. Such a phenomenon does not occur for € > 0.



Figure 4: Play: w versus uw at z = 1 for example 1 with ¢ = 0.1
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Figure 5: w and w as functions of ¢t at # = 1 for example 1 withe =0. watz =1:
solid line, u at 2 = 0 : dotted line, w at z = 1 : dashed line.
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Figure 6: Relay: w versus w at = 1 for example 1 with ¢ =0

Q
\\\\\\\\\\\\\sw
0 \ \

~\\\\‘\\\\\\\\\\\ \\\\\
\\\\\\\\\\\\\\\\\\\\\\\\
NN \\\
h\ X

Figure 7: Profile at ¢ = 1.25 for example 2 with e =0



Figure 8: Profile at ¢ = 1.25 for example 3 with € = 0.1

It is obvious from the examples and their plots that parabolic equations with
boundary conditions of hysteresis type can be treated numerically in a natural way
that is similar to those with the usual Dirichlet or Neumann conditions. On the
other hand the solutions of initial boundary value problems may have properties
that are known for phase change problems. In special cases the boundary condition
of hysteresis type results in switching back and forth from Dirichlet to Neumann or
unilateral conditions on the boundary. The numerical experiments presented in this
paper demonstrate these special features of the solutions of initial boundary value
problems for partial differential equation.
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