PARABOLIC PDE WITH HYSTERESIS

R. E. SHOWALTER, THOMAS D. LITTLE AND ULRICH HORNUNG

ABSTRACT. Our objective here is to describe some results on the well-posedness of
initial-boundary-value problems for a nonlinear parabolic partial differential equation
with memory effects and with general boundary conditions. The system consists of
a general porous medium equation together with a family of ordinary differential
equations subject to constraints. Such a system includes a very general class of
hysteresis functionals known as Preisach models of hysteresis.

1. INTRODUCTION

We begin by describing a system consisting of a parabolic partial differential
equation and an ordinary differential equation which are coupled naturally by terms
which depend on the difference of the unknowns. This system takes the form

(1.1.a) 2a(u,(a:,t)) — Au(z,t) — c(v(z,t) —u(z,t)) > f(z,t), z€Q,te(0,T],

ot
(1.1.b) %b(v(a:,t)) +c(v(z,t) —u(z,t)) 3 g(x,t) ,
(1.1.c) — %u(s,t) € d(u(s,t)), se€o,

in which v = u(z,t) and v = v(z,t) are functions defined on a bounded domain 2
in Euclidean space R”, and 7" > 0 denotes the length of the time interval. Note that
(1.1) contains a generalized porous medium equation, and we make no assumptions
of strict monotonicity of a(-). In particular, we allow the degenerate case a(-) = 0,
and this reduces (1.1) to a pseudoparabolic equation [7].

If each of a(+), b(+), ¢(-) and d(-) were a monotone (non-decreasing) function, then
the inclusion symbols, 3, would be replaced by the corresponding equality symbol.
Such systems arise in many contexts, for example, in the diffusion of chemicals
through a saturated porous medium in which (1.1.b) models the local storeage or
absorbtion in immobile nondiffusive sites. In that case, u is the concentration of a
chemical species in the fluid which occupies the pores and v is the concentration
on the surface of the medium. These are commonly called first order kinetic mod-
els, and they arise in many applications to describe diffusion through an absorbing
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medium. These systems can be regarded as a degenerate case of a corresponding
parabolic system which contains an additional term —Awv(z,t) in (1.1.b). These in
turn arise as parallel models of flow through a heterogeneous medium consisting of
two components with different diffusivities and an exchange flux driven by the dif-
ference in concentration between the two components. In (1.1.b) this diffusion term
has been deleted because of the immobility of the concentration in the absorbtion
sites.

For our purposes it will be necessary to permit a(-), b(-), and especially ¢(-) to be
multi-valued. That is, we shall consider the case where these are mazimal monotone
graphs in R x R [5]. In particular, if 5(0) = R, hence, b is the inverse of the zero
graph, then the system (1.1) reduces to (1.1.a) with v = 0. Likewise, if ¢(0) = R,
then v = v, and the system reduces to

%(a(u(m,t)) + b(u(z,t))) — Au(z,t) = f(z,t) + g(=,t) zeQ, te(0,T]
together with the boundary condition (1.1.c). These are merely additive perturba-
tions of the porous medium equation.

This generalization to multi-valued graphs will permit a very elegant treatment
of a class of parabolic problems with hysteresis, and we shall describe this below.
These are of the form

0

(1.2) =

(a(u) +H(u)) — Au=f

in which H denotes a hysteresis functional, that is, its value depends not only on the
current value of the input, u, but also on the history of the input in a very nonlinear
way. Due to the complex nature of the operators customarily used to represent
hysteresis [12], their addition to systems of differential equations leads to substantial
technical problems for the development of a good theory. An excellent introduction
to hysteresis is the monograph [20], and one should consult the recent survey [18].
The new book [28] is an excellent source for history and recent developments of
mathematical models of hysteresis as well as their addition to partial differential
equations, especially those of parabolic type. See also [11], [27]. The forthcoming
monograph [13] concerns quasilinear wave equations with elasto-plastic hysteretic
constitutive laws arising in mechanics.

Our plan is as follows. In Section 2 we show how the ordinary differential equa-
tion (1.1.b) provides a mechanism for modeling the class of hysteresis functionals
known as generalized play. The main point is that the maximal monotone graphs
permit the consideration of differential equations with constraints. This construc-
tion extends naturally to include the very general class of hysteresis functionals
known as Preisach type [15], [17]. See [27] for a similar method developed earlier
and reported in [28]. In Section 3 we describe an example in which the form (1.2)
arises naturally, a free-boundary problem which generalizes the Stefan problem to
permit super-cooled water or super-heated ice [29], [14]. In Section 4 we describe a
related problem in which the hysteresis occurs on the boundary [10], [11]. Because
of the generality attained via our use of maximal monotone graphs, this class in-
cludes boundary conditions of all the usual types, including Dirichlet, Neumann,
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Robin, and the fourth type, i.e., the dynamic boundary conditions [7], [24]. Addi-
tional papers that deal with problems closely related to those of the present paper
are [1], [25], and [26], where parabolic problems with a hysteresis source term are
studied. Section 5 contains some remarks on extensions and related problems.

2. HysSTERESIS MODELS IN PDE

We first consider an elementary but fundamental example of hysteresis. The
example depends on three parameters, «, 3, and €, with 0 < ¢, a < 3. Denote by
[z]4+ and [x]_, respectively, the positive and negative parts of the real number z.
Let’s look at the response w(-) that arises from a given input, u(-). The output
w = Ha p,(u) varies according to the following: if u > B+¢, thenw =1; if u <
a, then w=0; ifa<u<f+¢ then 0 <w <1 and

( [UI(t)] if'w:u_ﬁ
€ |4 e

u—aoa
’

w'(t) = ¢ Oifu_ﬁ<'w<
€ €

[M] ifw=""2

€ €

For example, suppose we start with »(0) = 0 and w(0) = 0. As long as u(t)
remains between a and [, the output w stays constant at the value w(t) = 0. If
u(t) increases to [ and then beyond [ + €, then w(t) increases to +1 where it
remains until u(t) gets down to a+e. If u(t) decreases below «, then w(t) will drop
to 0 and remain there until u(t) again reaches 3, and so on. It is clear that the
output w(t) depends not only on the present value but also on the history of the
input u(s) for previous times, 0 < s < ¢t. The limiting case obtained from € — 0
is the relay hysteresis functional H, g that is basic to the Preisach representation
of a very general class of hysteresis functionals. This class will be included in our
theory below. When @ = 8 = 0 this reduces further to the Heaviside graph H(-),
which is defined by H(u) = {0} if u < 0, H(0) = [0, 1], and H(u) = {1} if u > 0.

In order to see how an ordinary differential equation with constraint can produce
such a hysteresis functional, we consider a somewhat more general situation. Let
a maximal monotone graph b(-) be given; this hysteresis model will be of the type
generalized play described by horizontal translates of w € b(u). The hysteresis
functional H, g described above is given by the choice b = H,, where

ifr>e
ifo<r<e
ifr<0.

H(r)=

O s =

Thus, we introduce a new variable, v, in order to represent the phase constraints:
weblw), u—F<v<u—a.

We use the sign function (or graph) sgn to realize these constraints. Recall that it is
defined by sgn(z) =1 if z > 0, sgn(z) = —1 if z < 0, and sgn(0) = [—1, 1]. We shall
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use its scaled version, sgn, 5, defined by sgn, 5(z) = g if z > 0, sgn, 5(z) = a
if z < 0, and sgn, 4(0) = [a, B]. Thus, let u(t) be a time-dependent input to
this generalized play model, and let w(t) be the corresponding output or response.
There is at each time ¢ a corresponding phase variable v(t) which is related to
w(t) and u(t) as above, and so it is required that w(t) be non-decreasing when
v(t) = u(t) — B, non-increasing when v(t) = u(t) — «, and stationary (w’(t) = 0) in
the interior region where u — 3 < v < u — a. This is equivalent to requiring that
w(t), v(t) satisfy

w(t) €b(v(t)) , w'+ sgn:}‘37_a(v(t) —u(t))>0.
Thus, we are led to ordinary differential equations of the form
w(t) € blv(t)) , w'(t)+c(v(t) —u(t)) 30,

with maximal monotone graphs b(-) and ¢(+), as models of hysteresis in which the
output is the solution w(t) with input w(¢). This is just what appears in (1.1.b).

We have described above the relay hysteresis functional which is determined by
the sign graph and the two parameters a < (3. These translation parameters are
the switching positions of the relay, and we denote the output of this relay by
Wq,8 = Hap(u). This operator can be represented by a rectangular loop which
is the input-output graph of the relay which switches up to the value w = 1 at
u = (8 and down to the value w = —1 at v = «. In addition to the family
of relay functionals H, g, let there be prescribed a family of weights, u(a, 3) on
S ={y = (o, ) : @ < B}. Then we obtain a hysteresis functional depending on the
measure space (S, u), and its output is given by

M@@=meﬂw@,

where w is the solution w(y,t) = wq,g(t) of

w(y, 1) € b0, 1) oy 1)+ seny (v, 1) (1) 50, yes.

Such a construction is known as a Preisach model of hysteresis, and this represents
a very general class of hysteresis functionals. This representation is a continu-
ous weighted sum of the outputs of a family of parallel connected relay switches,
parametrized by their switching values and independently responding to the com-
mon input, u(t). Thus, the Preisach model is a superposition of the simplest type
of hysteresis functionals, the relay. When this hysteresis class is combined with the
nonlinear diffusion equation as above, we have the system of the form

(2.1.a) %a(u(m, )+ % /Sb(v(m, y, 1)) du(y) — Au(z, t)

= f(z,t), z€Q,te(0,T],
(2.1.b) %b(v(w, y, b)) + sgngl(v(a:, y,t) —u(z,t)) >0, yeS,
(2.1.0) = 9 (s, ) € dlu(s, 1), s€09 .

ov
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This is a degenerate parabolic system of coupled equations with Neumann type
boundary conditions for which the initial conditions a(u(z,0)) and b(v(z,y,0))
are to be specified, and it realizes the parabolic equation (1.2) with the indicated
Preisach hysteresis.

We have shown in [15], [17] that the dynamics of problem (2.1) is determined
by a nonlinear semigroup of contractions on the Banach space L'(Q) x L*(2 x S).
The negative of the generator of this contraction semigroup is constructed as an
operator C which realizes the system (2.1) as a Cauchy problem

w'(t) + C(w(t)) 2 f(t), 0<t, w(0)=wo

in the Banach space L*(2) x L'(Q x S). Then one shows that C is an m-accretive
operator on this Banach space.

We recall this notion briefly. A (possibly multi-valued) operator or relation C
in a Banach space X is a collection of related pairs [z,y] € X x X denoted by
y € C(x); the range Rg(C) consists of all such y. The operator C is called accretive
if for all y; € C(z1), y2 € C(xz) and € > 0

|lz1 — 22| < ||v1 — 22 + e(y1 — w2)|| -

This is equivalent to requiring that (I + eC)~! is a contraction on Rg(I + €C)
for every € > 0. If, in addition, Rg(I 4+ ¢C) = X for some (equivalently, for all)
e > 0, then C is called m-accretive. For such an operator, one can approximate the
derivative in the evolution equation by a backward-difference quotient of step size
h > 0 and the function f(t) by the step function f*(t) (= f} for kh <t < (k+1)h)
and get a unique solution {w! : 1 < k} of

wi —wi_y

- +C(wh) > fi, k=1,2,...,

with wf = wy. Since C is m-accretive, this scheme is uniquely solved recursively to
obtain w,’; and, hence, the piecewise-constant approximate solution w”(t) (= wZ for
kh <t < (k+1)h) of the Cauchy problem. The fundamental result is the following.

Theorem (Crandall-Liggett). Assume C is m-accretive, wy € D(C), f € L*([0,T], X)l]
and that f* — f in L'([0,T],X). Then w® — w(-) uniformly as h — 0 and

Thus, w(-) is an obvious candidate for a solution of the Cauchy problem. It can be
uniquely characterized as an integral solution. Moreover, if fi, f» € L*([0,T], X)
and wy, wy are integral solutions of w} + C(w;) > f;, 0<t, j=1,2,then

[w1(t) — w2 (8)|] < [lw1(0) — w2 (0)] +/0 [f1(s) = fa(s)lds , O <t.

However, this rather technical characterization does not even require any differen-
tiability of the solution. For an introduction to the abstract Cauchy problem in
Banach space and its applications to initial-boundary-value problems for partial
differential equations, see [2], [3], [6] and their included references.
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3. A FREE-BOUNDARY PROBLEM

We describe now a model of the melting and refreezing of water/ice in a porous
medium and the hysteresis effects that result from the assumption that the melting
and the freezing temperatures are different. The ice melts at a slightly positive
temperature and freezing occurs after a slightly negative temperature is reached.
For this example of phase change with super-heating or super-cooling, existence of
a solution was shown in [29] by compactness methods, and the full well-posedness
of the problem in L' was described in [14] as an example of the system (1.1).

We begin with the description of the phase relation between energy and temper-
ature. Let o and (3 be given numbers with a < 0 < . Begin with a unit volume
of ice at temperature u < « and apply a uniform heat source of intensity F', so
e = F't is the accumulated internal energy. The temperature increases according
to the relation e = c(u) until it reaches the value v = f > 0. Then it remains at
u = [ until L units of additional heat have been added; L > 0 is the latent heat.
During this period there is a fraction w of water coexisting with the ice, and w
increases at the constant rate F//L. The water fraction w, 0 < w < 1, is the phase
variable. After all the ice has melted, w = 1 and the temperature u begins to rise
again according to e = c¢(u) + L. If the process is reversed by drawing heat out of
the unit volume, the temperature falls according to e = ¢(u) + L until it reaches
u = a < 0, then w decreases until it reaches w = 0, and thereafter the temperature
u falls with e = c¢(u). Note that the freezing took place at u = « and the melting
at u = B. If a = [ this is just the traditional Stefan problem. However the model
presented above permits superheated ice and supercooled water, and it is here that
hysteresis occurs. The relation between energy and temperature is given in terms
of the Heaviside function by e € c¢(u) + LH(u — 3) when u is increasing and by
e € ¢(u) + LH(u — «) when it is decreasing. The difference e — c(u) is just L times
the simple relay: w € Hq pg(u) means w = H(u — () if u is increasing from below
a, and w € H(u — «) if u is decreasing from above . Also, w remains constant
for o < u < 3, since there is no phase change until one of the threshold values is
reached.

We shall formulate a free-boundary problem which describes heat conduction
through a domain G in Euclidean space R™ subject to the constitutive assumptions
above on the hysteresis phase relation between energy and temperature. This we
call the Super-Stefan problem. Denote the boundary of G by 0G and set Q =
G % (0,00). The temperature at the point z € G and the time ¢ > 0 is u(z,t) and
the smooth monotone functions c(u), k(u) are given with ¢(0) = k(0) = 0; their
derivatives ¢’ (u), k' (u) denote the specific heat and conductivity, respectively, of ice-
water at temperature u. The phase change from water to ice occurs at u = a < 0
and from ice to water at u = 3 > 0. The space-time region €2 is then separated into
an always-ice region {2_ where u < «, an always-water region 2, where u > 3, and
a region y where a < u < (8 and in which the phase depends on it’s preceding
history.

Let w(z,t) be the fraction of water at (z,¢) € €, and note that according to
our constitutive assumptions above we have w € H, g(u). The energy is given by
e = c¢(u) + Lw. Let S_ be the boundary of Q_ in ©Q and Sy the boundary of
in Q. The unit normal N = (Ny,..., Ny, N;) on S_ U S, is oriented out of 2_



PARABOLIC PDE WITH HYSTERESIS 7
and Q4 , and hence into €. We shall denote by [g] the saltus or jump in values

of the function g across the boundaries, S_ and S;, in the direction of N : for
(.CE , t) esS_u S+

[g(x,t)] = hli)lglJr{g((m,t) + hN) — g((m,t) — hN)} )

The strong form of the Super-Stefan problem is to find a pair of functions u and
w on () for which

3.1.a) %c(u) —Ak(u) =0in Q_UQyUQ,
3.1.b) w € Hap(u)in Q,
3.1.c) [VE(w)] - (N1,... ,Nm) = LN[w] on S_ U Sy ,

w(z,0)=uy, z€G,
w(z,0) = we(x) € [0,1] , where a < up(z) <3,
3.3) u(s,t) =0, s€0G, t>0.

For the moment one should assume w(x) is either identically zero or identically one;
this is only to avoid introducing a mushy region. The classical (possibly nonlinear)
heat equation (3.1.a) determines the temperature where v # « and u # (. The
water fraction is given by the hysteresis functional (3.1.b) which was described
above, so we have w = 0in £2_, w = 1 in Q4, and w is either 0 or 1 in 2y according
to whether the temperature was last below « or above 3, respectively. Let n be the
unit vector in the direction (Ny,..., Ny, ), and let V be the velocity of S_ or S, at
time ¢ in the direction of n. By dividing (3.1.c) by (N2 + --- 4+ N2)¥/2, we obtain

[%k(u)] + LV[w] =0 on S_US,,

and this is equivalent to (3.1.c). It means the difference in heat flux across the free
boundary S, determines the velocity V of that boundary by melting the fraction of
ice 1—w = —[w] with latent heat L, and similarly the velocity of S_ is determined by
the freezing of the fraction of water w = [w]. The Dirichlet boundary condition (3.3)
is used here for simplicity, but any of the usual types can just as easily be attained.
Finally, one can show by a computation of (3.1.a) and (3.1.c) as distributions on
Q) x (0T] that the weak form of the Super-Stefan problem is to find a pair u € L'(),
w € L*(Q) for which

(3.4.a) % (c(u) + Lw) — Ak(u) = 0 in D'(Q) ,

(3.4.b) w € Hqp(u)in Q

and k(u) € L?(0,T; H}(G)). With the appropriate change of variable, this is just
the equation (1.2) with the simple relay hysteresis. In the presence of a distributed
source, there may also arise regions consisting of a mixture of ice and water. Such
mushy regions may then persist into 2.
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4. DYNAMIC BOUNDARY CONDITIONS

Next we describe a problem with the same formal structure, a degenerate-
parabolic initial boundary value problem for ¢ > 0

(4.1.a) %a(u) —Au> f, z €],
0 ou

(4.1.b) ab(v) t5,29 and

(4.1.c) % €clv—u), sel

with initial values specified at ¢ = 0 for a(u) and b(v). At each t > 0, u(t) is a
function on the bounded domain € in R" with smooth boundary I', and v(¢) is a
function on I'. Each of a(-),b(-),c(-) is a maximal monotone graph in R x R [5].
Thus, the system (4.1) consists of a generalized porous medium equation in the
interior of {2 subject to a nonlinear dynamic constraint on the boundary.

A rather remarkable variety of boundary conditions are obtained in (4.1). For
example, if b = 0 we have an explicit Neumann boundary condition, and if ¢ = 0
it is homogeneous. If (0) = R (i.e., b~ = 0), then v = 0 and we have a nonlinear
Robin constraint, and if ¢(0) = R we get v = uw on I', and this satisfies a nonlinear
dynamic boundary condition

, 0 ou

If 5(0) = ¢(0) = R we have the homogeneous Dirichlet boundary condition. Our
interest in (4.1) arises primarily from the fact that (4.1.b) together with (4.1.c) can
represent boundary hysteresis. One can include a superposition of such generalized
plays as in (2.1) and, thereby, a Preisach hysteresis on the boundary.

We have shown in [10] that the dynamics of the problem (4.1) is given by a
nonlinear semigroup of contractions on the Banach space L'(Q2) x L(T"). This was
announced in [11] with some numerical examples. Although the hysteresis effects
obtained from the pair of graphs b(-), ¢(-) were our primary motivation, we were
able to include the third graph a(-) with no essential additional difficulty. This
is merely a reflection of the power of the method which was developed in [23];
this method permits the extension to gradient nonlinearities of p-Laplacean type in
(4.1.a) as well as corresponding elliptic Laplace-Beltrami operators in (4.1.b) for the
manifold I'. See [19] for a treatment of the degenerate case a(-) = 0 corresponding to
a Stefan problem on the boundary I'. Adsorption in porous media may be governed
by conditions on the surfaces of the solid material that are of hysteresis type. If
one assumes that the process is governed by certain thresholds, the adsorption rate
shows a hysteresis phenomenon of the kind discussed here. In [9] this idea is applied
to homogenization of reactive transport through porous media. See also [8], [23].

Finally we would like to indicate the types of estimates that are involved for
the problem (4.1), and we will do this for simplicity in the (much simpler) special
case of functions a(-), b(-), ¢(-). The (negative of the) generator of the desired
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contraction semigroup is (the closure of) an operator C for which the resolvent
equation, (I +¢C)([a,b]) 2 [f, g] with € > 0, takes the form

(4.2.a) a(u) —eAu > f, e,
(4.2.b) bv) +e2% 5 d
2. v)teg 29, an
ou
(4.2.c) 3 €c(v—u), sel,

in the state space L'(Q) x L*(T"). In order to show how one obtains the essential es-

timates that are needed, multiply the respective equations by appropriate functions

@ on 2 and ¥ on I' and integrate to obtain

(4.3)

/ (a(u)p + eVu- 6(,0) dx + /
Q

r

(b(o) W+ ec(v — u) (s — ¢)) ds = /Q fodo+ /F g ds .

This suggests the variational formulation of (4.2) and leads to the essential a-
priori estimates. For example, if we choose ¢ = sgn(u), ¥» = sgn(v) and can
obtain simultaneously ¢ = sgn(a(u)), ¥ = sgn(b(v)), then we (formally) obtain the
stability estimate

(4.4) lla(w)||zr @) + [[6()|[zr ) < (|fllzr @) + llgllzr@y -

By estimating similarly the differences of solutions, we establish that the resolvent
map [f, g] — [u,v] — [a(u),b(v)] is a contraction, and this is the accretiveness of
the operator C. Under additional conditions on the monotone graphs a(-), b(-), and
c(-), we find that C is m-accretive as desired.

5. REMARKS AND EXTENSIONS

We mention a useful modification of the enthalpy functional (3.1.b). The simple
relay o p(u) described above is an idealization. Specifically, during the phase
change the temperature u does not likely remain exactly constant but increases
at a very small rate. Thus, it is reasonable to replace the Heaviside relation by a
(single-valued) monotone function which closely approximates it. Also, if one could
manage to force temperatures past either of the phase-change temperatures, the
phase w, would not be expected to respond instantly, but only at a very high rate.
We can easily accomodate both of these modifications, and the latter corresponds to
a dynamic model of hysteresis [20], [21] which is both useful for numerical simulation
and suggests a technique for dealing with models of vector hysteresis.

There are many generalizations of hysteresis to operators on vector valued func-
tions, but it quickly becomes clear that the inclusion of such operators in systems
of PDFE'’s is difficult. Even for the simplest case of a diagonal Laplace operator,
one can apply the techniques above to systems of the form (1.2) essentially only
when the hysteresis operator is also diagonal, so the system can be coupled only in
strictly lower order terms. Moreover, for even the simplest isotropic diagonal hys-
teresis operators, the techniques described above will fail for (1.2) with the highly
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degenerate double curl operator (in place of Laplace) that arises in the special qua-
sistatic parabolic case of the problem of conduction in an Ohmic ferromagnetic
material. By using certain dynamic models mentioned above, one can combine ap-
proximate Preisach hysteresis operators with systems of PDE’s, not only of the
parabolic type (1.2) arising in the quasistatic case above, but also in the original
hyperbolic system of Maxwell equations [22].

On the contrary, other classes of hysteresis operators can be paired with rather
general nonlinear parabolic or hyperbolic systems [16]. The theory of evolution
equations in Hilbert space can be used to obtain well-posedness results for semilin-
ear systems of partial differential equations containing a class of vector hysteresis
functionals which includes generalized play and continuous sums of such functionals,
known as Prandtl-Ishlinskii type. These include the wave equations of the form

(5.1) %(%(cv—i—%(v))—i—b(v)) _Av=F,

in which ¢ > 0 and b is (possibly) nonlinear, as well as similar viscous damped
equations of the form

(5.2) %(%(cv—l—%(v))—AV) _Av=F,

The problem of coupling equations of motion with an elasto-plastic constitutive law
is the subject of [13] in which the hysteresis is combined with a scalar quasilinear
wave equation. Moreover, by developing and exploiting the dissipative effects and
memory structure of very large classes of hysteresis operators, classical compactness
and monotonicity methods are used very effectively.
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