Math Faculty as Partners in Teaching a non-Euclidean Geometry Course for K-12 Teachers

David Damcke, Tevian Dray, Maria Fung, Dianne Hart, and Lyn Riverstone

Summary of Partnership

- Curriculum development
- Course implementation
- Course expansion and revision
- Faculty professional development and growth
- Dissemination efforts

Geometry for K-12 Teachers

- Oregon Mathematics Leadership Institute (OMLI)
 - NSF-funded partnership project— OSU/PSU/TDG/10 OR school districts (NSF/EHR-0412553; ODE/Oregon ESEA Title II-B MSP)
 - One of 6 mathematics courses
 - Aimed at deepening geometry content knowledge of K-12 teachers

Non-Euclidean Geometry

- OMLI district leaders recommend non-Euclidean geometry
 - Spherical geometry
 - Taxicab geometry
- "Comparing Different Geometries"
- ☐ Intense: 15 two-hour sessions
- □ Team-taught

The Geometry Team

- Research mathematician with interest in mathematics education
- Master teacher
- Mathematics education specialist from a teaching university
- 2 college instructors with varied teaching experience

Curriculum Highlights

- Unit on spherical geometry
 - Lines
 - Parallel and perpendicular lines
 - Set of points equidistant from 2 different points
 - Common perpendicular
 - Polygons: triangles, "squares"
 - Circles

Curriculum Highlights Continued

- Unit on Taxicab geometry
 - Distance
 - Midpoints
 - Sets of points equidistant from two given points
 - Squares
 - \blacksquare Circles and π
 - Triangles and congruence

Preparation for Delivery

- ☐ Teachers Development Group workshops and readings:
 - "Best Practices"
 - Cooperative Learning
 - Promoting Discourse in the Classroom
- □ Lesson plans
- □ Daily debrief sessions
- Reflection and revision

OMLI's Role

- Numerous opportunities to meet
 - Year-round communication
 - Retreats
- ☐ Facilitation of exchange of ideas
 - In person
 - Via e-mail
- Development of group dynamics
 - Cooperative division of labor
 - Embracing similarities and differences in style

Implementation

- Building comparison charts
 - Spherical with Euclidean geometry
 - Taxicab with Euclidean geometry

 $\pi \in [2,3.14]$

- □ Group projects
 - □ Capstone experience: extension of ides
 - Presentations and posters

Equilateral Triangles

Pedagogical Lessons

- More and better mathematics discourse and learning:
 - Rich mathematical tasks
 - Orchestrated cooperative learning
 - Effective facilitation
 - Comparison: relating, connecting, multiple representations

Expansion and Revision

- Focus on undefined terms, axioms, and precise definitions
- Switch of topic order and introduce new manipulative aids: Etch-a-sketch
- More sophisticated cooperative learning strategies: jigsaw puzzle, differentiated tasks
- □ Role of writing: from writing reflections, to prompts, to exit cards

Faculty Growth

- Challenges and triumphs of team teaching
 - Prepare, share, collaborate
 - Draw on each other's strengths
 - Stay flexible
 - Learn and reflect
- Lesson study
- Open door policy

Faculty Impact

- ☐ Threefold impact on own classrooms
 - Mathematics discourse
 - Mathematical tasks
 - ☐ Group work
 - □ Facilitation skills
 - Projects: capstone experiences
 - Assessment: reflective, peer, rubrics

Mathematical Tasks

- Multiple entry points
- ☐ Group-worthy
- Applied, hands-on nature
- More open ended
 - Use an Etch-a-Sketch to explore the notion of Taxicab geometry distance by measuring the length of the diagonal line on the Etch-a-Sketch by turning one knob at a time.

Group Work

- Awareness of equity issues
 - Heterogeneous groups
 - Careful selection and rotation
 - Roles
- Judicious Orchestration
 - Size of groups
 - Huddles
 - Protocols
- Advanced collaborative learning strategies
 - Jigsaw

Facilitation Skills

- Better questioning techniques
- Observing and sequencing
 - from simple to complex
 - from kernels of idea to its development
 - handling student mistakes by letting groups respond
- Connecting student ideas better

Focus on Students' Thinking

- "Less is more."
- ☐ Listen, observe, take notes.
- Use student feedback to adjust teaching.
- Focus on justification and sensemaking at all times.

Dissemination Efforts

- Entire set of curriculum materials is ready for publication through *Teachers Development Group*
- Article accepted in The Montana Mathematics Enthusiasts Monograph on Discourse (pedagogy)
- □ Article in preparation to be submitted to School Science and Mathematics (content)
- □ "Dare to Compare? Introduction to Using Comparison Charts in the Mathematics Classroom" appeared in May/June 2008 TOMT