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Abstract

The formula for the area of a hyperbolic triangle in terms of its angle defect is
derived using hyperbolic lunes, in analogy with the argument using (elliptic) lunes to
express the area of an elliptic triangle in terms of its angle excess. Several pedagogical
features of this construction are then discussed.

1 Introduction

A standard topic in non-Euclidean geometry is the fact that triangles in hyperbolic geometry
have angle sum less than π, and further that their area is proportional to this difference.
Similarly, in elliptic geometry, which includes spherical geometry, triangles have angle sum
greater than π, and their area is again proportional to this difference.

However, the derivations of these results differ considerably in the two cases. Many
treatments of non-Euclidean geometry emphasize hyperbolic geometry, sometimes to the
exclusion of elliptic geometry altogether. Of the two, hyperbolic geometry is indeed much
closer to Euclidean geometry, in the sense that only the parallel postulate needs to be
changed. Nonetheless, spherical geometry is more familiar to students, and of course has
historical relevance to cartography and navigation.

In hyperbolic geometry, area is typically (see for example [1]) investigated by using side-
angle-side congruence (SAS) to establish equivalence of regions that can be decomposed into
congruent triangles, and then relating equivalence to angle sums. This derivation is rather
lengthy, and not entirely straightforward to generalize to elliptic geometry. However, there
is an easy derivation of the area formula in spherical geometry, using lunes.

Why not go the other way?
One method of doing so is presented below. This idea is certainly not original to the

author, although the presentation here may be new. Among other goals, this paper is
intended as a resource for those who might wish to bring this approach into the classroom.
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Figure 1: A spherical lune.

A quick summary of the spherical case is given in Section 2, although in the setting
of single elliptic geometry rather than double elliptic (that is, spherical) geometry. The
hyperbolic case is discussed in Section 3, and further discussion of the pedagogical aspects
of this approach appears in Section 5.

2 Elliptic Lunes

A spherical lune consists of an “orange-peel” segment between two intersecting (spherical)
line segments (not lines) connecting a pair of antipodal points, as shown in Figure 1. The
angle of a spherical lune is either of the two congruent interior angles at the intersection
points. There are of course two lunes shown in Figure 1, although we will henceforth restrict
angles to lie between 0 and π, inclusive. The area AS of a spherical lune with angle α is
clearly the fraction α/2π of the area of the sphere, so

AS(α) =
α

2π
4πr2 = 2αr2 (1)

where r denotes the radius of the sphere.
It is well known that the area of a spherical triangle can be determined by considering

the overlapping spherical lunes formed at its vertices. Here, we give that argument a twist
by working in the Klein disk model of elliptic geometry. 1

The Klein disk model of single elliptic geometry is obtained from the sphere using stereo-
graphic projection from the north pole into the plane through the equator, and then consider-
ing only the southern hemisphere. Equivalently, the Klein disk represents the real projective
plane, obtained by identifying antipodal points on the sphere. The points of this geometric
model are therefore either points interior to the disk bounded by the equator or pairs of
antipodal points on the equator. Elliptic lines in this model are arcs of Euclidean circles
that intersect the equator in antipodal (Euclidean) points. Since stereographic projection is
a conformal mapping, angles in this model are Euclidean.

1Do not confuse this Klein disk with the Beltrami–Klein model of hyperbolic geometry, which is also,
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Figure 2: An elliptic triangle covered with lunes on a Lénárt sphere (left) and in the Klein
disk (right).

The Klein disk is not orientable, and “wraps around;” points near the boundary are very
close to points directly opposite them.

A lune in the Klein disk is the same as in spherical geometry—except that the two
antipodal points now represent a single point. The right-hand image in Figure 2 shows an
elliptic triangle in the Klein disk covered by three overlapping lunes, with the overlap being
the triangle itself. Each lune starts at a vertex of the triangle, proceeds through the triangle
to the edge of the disk, wraps around to the other side, and returns to its starting point.

We don’t need to know the radius of the underlying sphere in order to use Figure 2
to obtain a formula for the area of the triangle shown. Since area in the Klein disk is by
definition the same as the corresponding area on the sphere, it is clear that the area AK(α)
of a Klein lune is proportional to its angle, α. Writing AD for the total area of the Klein
disk, we then have

AK(α) =
α

π
AD (2)

since the entire disk is covered if α = π.
We’re almost there! If the interior angles of the triangle are α, β, γ, then those are also

the angles of the three Klein lunes. But these lunes cover the disk, and overlap only on the
triangle, leading to two extra copies of the triangle. We therefore have

AK(α) + AK(β) + AK(γ) = AD + 2AE (3)

from which the area AE of the triangle can be read off as

AE =
1

2
(AK(α) + AK(β) + AK(γ)− AD) =

α + β + γ − π
2π

AD (4)

which is proportional to the angle defect α + β + γ − π, as expected. If the radius r of the
underlying sphere is known, then AD = 2πr2—the area of the northern hemisphere—so that

AE = (α + β + γ − π) r2. (5)

confusingly, sometimes referred to as the Klein disk.
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Figure 3: A hyperbolic lune. Figure 4: An ideal triangle.

3 Hyperbolic Lunes

Let’s try the same approach in hyperbolic geometry. We will use the Poincaré disk model, in
which the points are restricted to the interior of the disk, and lines are now arcs of Euclidean
circles that intersect the (Euclidean) boundary at right angles (twice). Again, angles are
Euclidean, which can be traced to the fact that the Poincaré disk is the stereographic image
of the unit hyperboloid in Minkowski space [2]. The Poincaré disk model of hyperbolic
geometry is perhaps best known for its appearance in several Escher drawings that seem to
show repeated images that get smaller near the boundary of the disk. Once you realize that
all of these objects are in fact the same size in hyperbolic geometry, you have grasped the
basic nature of this model.

Unlike Euclidean geometry, with its unique parallel lines, or elliptic geometry, with no
parallel lines, hyperbolic geometry has infinitely many lines through a given point that are
parallel to a given line. But there are exactly two, one on each side, that are barely parallel,
in the sense that the corresponding Euclidean arcs meet on the boundary. Each of the “legs”
of the triangle shown in Figure 3 is barely parallel in this sense to the line at the bottom of
the triangle. Due to the perpendicularity condition, barely parallel lines are clearly tangent
to each other at the boundary.

So, as with a spherical lune, let’s start at a point and go off in two (non-collinear)
directions. But now the lines go off to infinity! Mind you, we know where they go—they
reach the circle that bounds the Poincaré disk. Points on this circle are called ideal points,
but are not part of the Poincaré disk. Ideal points can be added to any model of hyperbolic
geometry; they represent the intersection points of barely parallel lines.

We can make an infinite triangle by connecting the dots, as shown in Figure 3. Any such
triangle, which we will henceforth refer to as a hyperbolic lune, has three infinite sides. Only
one of these sides is a hyperbolic line; the other two are hyperbolic rays. And two of its
angles are zero! We use the remaining angle, at the vertex within the Poincaré disk, to label
the hyperbolic lune.

What if all three vertices are ideal points? Such triangles, in which all three angles are
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Figure 5: Supplementary lunes. Figure 6: Combining lunes.

zero, are called ideal triangles, an example of which is shown in Figure 4. 2 Both hyperbolic
lunes and ideal triangles can be thought of as limits to infinity of ordinary (hyperbolic)
triangles. It should therefore come as no surprise that the SAS congruence property of
(finite) hyperbolic triangles [1] extends to these (infinite) triangles, so long as the angle used
for hyperbolic lunes is the angle in the interior of the disk. Thus, two lunes with the same
(nonzero) angle are congruent, and all ideal triangles are congruent to each other. 3

So far, so good: Just as with elliptic lunes, the area of a hyperbolic lune depends only on
its angle. In the elliptic case, this result is obvious, since all points on the sphere are visibly
equivalent. All points in the Poincaré disk are similarly equivalent; the disk is homogeneous
and isotropic, although these properties are less obvious (unless one maps the disk to a
Lorentzian hyperboloid, as in [2]).

We are now ready to try to use hyperbolic lunes to determine the area of a triangle.
Denote the area of a hyperbolic lune with (nonzero) angle α by AP (α), and the area of the
ideal triangle as AI = AP (0).

Step 1: Supplementary Hyperbolic Lunes
Two supplementary lunes combine to make an ideal triangle, that is

AP (α) + AP (π − α) = AI . (6)

Proof: See Figure 5, which shows how to split an ideal triangle into two supplementary lunes.

Step 2: Addition of Hyperbolic Lunes
Hyperbolic lunes can be “added” in the sense that

AP (π − α) + AP (π − β) = AP (π − (α + β)). (7)

2Hyperbolic lunes are sometimes called 2/3-ideal triangles.
3However, SSS congruence fails, otherwise all hyperbolic lunes would be congruent! Where does the proof

fail that shows that SSS congruence follows from SAS congruence?
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Figure 7: A hyperbolic triangle and its exterior lunes combine to make an ideal triangle.

Proof: See Figure 6. The angles α and β are below the marked point, separated by the
vertical line. So the lune at the bottom has angle α + β, and the two lunes above it have
angles π − α and π − β, respectively. From the figure, we therefore have

AP (α + β) + AP (π − α) + AP (π − β) = AI (8)

and using (6) leads immediately to (7).
Equation (7) says that the function f(α) = AP (π − α) must be linear, and furthermore

that f(0) = 0. Thus, AP (π − α) = kα, or equivalently

AP (α) = k(π − α) (9)

for some constant k. Furthermore, using (6), we also have

AI = kπ. (10)

We are finally ready to use our lunes to determine the area of a hyperbolic triangle.
Consider the triangle shown in Figure 7, together with three exterior hyperbolic lunes.
Denoting the interior angles at A, B, C by α, β, γ, respectively, the three lunes have the
supplementary angles π − α, π − β, π − γ, respectively, so from the figure we see that

AH + AP (π − α) + AP (π − β) + AP (π − γ) = AI (11)

where AH denotes the area of the triangle. Using Step 2, we obtain the expected expression
for AH , namely

AH = k(π − α− β − γ) (12)

thus using lunes to show that hyperbolic area is proportional to the defect.
We have therefore succeeded in replicating in hyperbolic geometry the elliptic use of lunes

in Section 2 to determine the area of a triangle, despite the fact that the elliptic models are
compact, whereas the total area of the Poincaré disk turns out to be infinite (as can be seen
from the hyperboloid representation in [2]).
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4 Why is the Area Finite?

The careful reader will have noticed a missing step in the construction just given. How do
we know that k is finite? It is tempting to argue from (12) that k < ∞, since the triangle
clearly has finite area. But this conclusion is not obvious, since the construction involved
subtracting terms that might be infinite, which is not well defined.

It is worth pointing out that the same critique applies to the elliptic case; we have tacitly
assumed that the (surface) area of the sphere is finite—or, equivalently, that the area of an
elliptic lune is finite. This assumption is of course reasonable, both because the sphere is
compact, and because we know that A = 4πr2, which could, for instance, be derived using
integration.

We could adopt the same strategy for hyperbolic lunes, and assume that the area of
such a lune is finite. Using Step 1 above, this assumption is equivalent to assuming that
the area of the ideal triangle is finite. This assumption is again reasonable, if less intuitive.
One way to justify this assumption would be to use integration to determine the area of a
hyperbolic lune centered at the origin. As in the elliptic case, this approach requires knowing
the metric (arclength formula); the metric for the Poincaré disk can be found for instance
in [2]. Although such a computation appears to involve additional structure, it is worth
reiterating that some similar structure was implicitly invoked in the elliptic case.

It would be nice to have a more elementary argument about the finiteness of the area. One
possibility would be to assume that the partial ordering provided by “area” on hyperbolic
triangles extends to both hyperbolic lunes and the ideal triangle. That is, assume that
when two such triangles are combined into a single triangle, the areas of the two component
triangles are strictly smaller than the resulting combination, even if these areas are infinite.
This assumption permits the subtraction of infinities in some cases, namely those in which
a triangle is being decomposed into smaller triangles. One can then conclude that the area
function has the linear form (9), and that k(α−β) = kα−kβ, with both sides being infinite
if k is infinite and α 6= β. 4 That’s enough to conclude from (12) that k must be finite—so
long as one is prepared to believe that a finite hyperbolic triangle must have finite area.

5 Discussion

The elliptic construction given in Section 2 can, and usually is, done with spherical lunes, and
makes a wonderful classroom activity. Lénárt spheres (see the left-hand image in Figure 2),
for instructors fortunate enough to have access to them, are an ideal tool for visualizing the
result, but any round object students can write on works fine. (Oranges are a good choice;
tennis balls less so.)

As is readily apparent when working on an actual sphere (but difficult to see in Figure 2),
there are now two triangles, and six lunes. However, the calculation is exactly the same as
for Klein lunes, with each term multiplied by two, leading to the same formula for the area,
namely (5).

4The crucial identity (7) can be verified directly, using SAS, without invoking the ideal triangle as in (8).
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Hyperbolic lunes can be introduced immediately afterward, so long as students are al-
ready familiar with a model of hyperbolic geometry—any model, not necessarily the Poincaré
disk used here. However, students will likely need significant help in constructing Figure 7
themselves; a better choice may be to present this construction as a lecture or whole-class
discussion.

Finally, the demonstration that certain objects with infinite sides nonetheless have finite
area is well worth discussing with the class as a whole, providing a wonderful opportunity
to discuss painting infinite fences. The author’s favorite version goes like this:

A fence is built along the x-axis for x ≥ 1, with height given by kx−2/3 for
some constant k.

• What is the area of the fence? How much paint is needed to paint it?

• If you build a big bucket as a surface of revolution that just fits the fence,
what is its volume? How much paint is needed to fill it? (Don’t ask how to
dip the fence into the bucket...)

• How much wood is needed to build the bucket?
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