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We describe the creation of a learning progression about partial derivatives that extends from lower-division
multivariable calculus through upper-division physics courses for majors. This work necessitated three mod-
ifications to the definition of a learning progression as described in the literature. The first modification is
the need to replace the concept of an upper anchor with concept images specific to different (sub)disciplines.
The second modification is that rich interconnections between ideas is the hallmark of an expert-like con-
cept image. The final modification is using representations in several ways to support the development of
translational fluency in emerging experts. These theoretical changes are supported by examples of research
and curriculum in the use of differentials in thermodynamics.
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Learning Progressions

Science education has recently focused on describing learning progressions (LPs) for content
that spans multiple years of instruction (Duschl, Schweingruber, & Shouse, 2007; Lemke & Gon-
zales, 2006); a similar idea, known as a learning trajectory, has been used in mathematics educa-
tion (Clements & Sarama, 2004, p. 83). Though many of the LPs described in the literature have
focused on K-12 instruction, there are science topics at the university level for which a similar
model may prove valuable for educators. LPs are typically characterized by a sequence of quali-
tatively different levels of knowledge and skills. One goal in the development of LPs is to refocus
instruction from concepts that are less consequential to those that are more central to mathematics
and science (Plummer, 2012). In particular, LPs are not based solely on a logical analysis of math-
ematics and science ideas—they are sequences that are supported by research on learners’ ideas
and skills.

Although the research literature includes various definitions for what constitutes a learning
progression (Lemke & Gonzales, 2006; Sikorski & Hammer, 2010; Sikorski, Winters, & Hammer,
2009), the National Research Council defines a learning progression to be “the successively more
sophisticated ways of thinking about a topic” (Duschl et al., 2007). The range of content addressed
by an LP is defined by a lower anchor, which is grounded in the prior ideas that students bring
to the classroom, and by an upper anchor, which is grounded in the knowledge and practices of
experts. These anchors are identified by research on the thinking of both novices and experts.
An LP hypothesizes pathways that students may follow through content, pathways that are then
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tested empirically (Corcoran, Mosher, & Rogat, 2009). Individual students might follow one of
many such pathways, which may be influenced by a variety of factors, including the educational
environment.

Some have noted limitations with learning progressions. LPs tend to place students in definite
levels of sophistication, when students might in fact give different answers to different questions,
making it difficult to place students on a single level. LPs also tend to identify only one scientifi-
cally correct upper anchor. We agree with the assessment of Sikorski and Hammer (2010, p.1037)
that “rather than describe students as ‘having’ or ‘not having’ a particular level of knowledge”
recent learning research “conceptualizes students’ knowledge as manifold, context-sensitive, and
coupled to and embedded in the social and physical environment.” In this paper, we describe a
perspective on learning progressions that embraces this manifold view of knowledge by incorpo-
rating the idea that it is a learner’s concept image (Tall & Vinner, 1981) that progresses in a way
that broadens or enriches a learner’s understanding of a topic.

In the next section, we describe three implications of thinking about LPs in terms of concept
images: (1) upper anchors must be generalized in a way that allows experts from different content
areas to be different from each other, (2) the strength of the interconnections within an individual’s
concept image are indicative of expertise, and (3) the role that representations and representational
fluency play in illuminating the LP must be elaborated. Then, we illustrate our suggested theoret-
ical changes with an example from an LP we are developing on student understanding of partial
derivatives, spanning the collegiate curriculum from lower-division multivariable calculus courses
through upper-division physics courses in thermodynamics.

Theoretical Additions to Learning Progressions

Experts’ Concept Images as “the” Upper Anchor
Interviews with faculty experts (Kustusch, Roundy, Dray, & Manogue, 2012, 2014; Roundy,

Weber, et al., 2015) have demonstrated, for example, that physicists and engineers have several
ways of reasoning about small quantities that are not shared by mathematicians. These studies,
along with our own internal group discussions, have shown that the ways in which experts approach
complex problems vary from person to person and from field to field—mathematics experts and
physics experts are not the same! We identify the rich and varied understandings of experts with the
concept image of Tall and Vinner (1981, p.152), i.e., “the total cognitive structure that is associated
with the concept, which includes all the mental pictures and associated properties and processes.”
Thus, we see the goal of an LP not as a definite, idealized upper anchor, but rather as a richer
understanding more akin to the concept images of experts from varied fields.

Connections as Indicative of Expertise
Hiebert and Carpenter (1992, p.67) suggest that understanding a mathematical idea requires it

to be part of an internal network and that “the degree of understanding is determined by the number
and strength of the internal connections.” From a concept image perspective, we view a learning
progression as describing the enrichment and the increased interconnectivity of a learner’s concept
image. As developing professionals, middle-division students need to develop such connections
rapidly. Yet Browne (2002) found that middle-division students tend not to go back and forth
between elements of a concept image spontaneously. To help students increase the strength of their
connections, our LP emphasizes opportunities for students to translate between such elements.

Students’ ability to transfer knowledge in these ways offers an important means for the empir-
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ical validation of our LP. Some of our data (Bajracharya, Emigh, & Manogue, 2017) shows that,
while students readily develop a broad concept image, the separate pieces within such a concept
image are not necessarily well connected. In contrast, the research discussed above indicates that
experts have a rich set of tools that they can use fluently. This representational fluency is itself a
key attribute of the upper anchor; achieving such fluency is one of the primary goals of our curric-
ular materials. We regard a learning progression as leading to the enrichment of students’ concept
images.

Representations and Representational Fluency
In addition to conceptual knowledge, an important aspect of a learner’s concept image of a

topic is knowledge of (external) representations, such as graphs, equations, experimental configu-
rations, etc. Representations are tools that communicate information between learners and instruc-
tors, and that also aid learners with thinking and learning (Hutchins, 1995; Kirsh, 2010). Therefore,
representations are centrally featured in our learning progression, both in our instruction and in our
research about expert and student reasoning.

In our curriculum, we think about external representations in three ways: as languages for
doing mathematics/physics, as disciplinary artifacts, and as pedagogical tools. First, we consider
different types of representations to be different languages for doing mathematics and physics. For
example, one might calculate a partial derivative at a given point in the domain from an equation,
a table of data, or a contour plot. These three different ways of expressing a multivariable func-
tion have different features and therefore require different procedures for making the calculation.
Starting with an equation requires acting on the equation with a differential operator, thereby trans-
forming one algebraic expression into another, and then the evaluation of the new expression at the
desired value in the domain. Starting with a table of discrete data requires reading off values, tak-
ing differences, and finding a ratio. In this case, it is necessary to include checks to insure that the
differences come from a sufficiently linear regime, with the definition of “sufficiently” depending
upon the experimental context (Dray, Gire, Manogue, & Roundy, 2017). We want students to be
fluent with each of these representations, and also to be able to coordinate or move between repre-
sentations. The language metaphor suggests that it should be possible for students to achieve some
fluency with representations, which would be consistent with an interconnected concept image.

Second, we think of some external representations as disciplinary artifacts. We use the term
artifact to emphasize that they are tools of cultural interest within the discipline. Continuing the
metaphor of representations as language, these particular representations play the role of technical
vocabulary. This distinction is particularly productive when a representation is commonly used
in the professional community but is pedagogically problematic. We want students to be able to
communicate with the broader community of mathematicians or physicists, so we make a point of
introducing these representations in our instruction. For example, a physicist describing a thermal
system might plot, on a single graph, data from two (or more) distinct processes. In cases where
the resulting curves intersect, an expert interprets this plot as two smooth functions that describe
two different experiments, but some students interpret such plots as a single function with a “cusp,”
and therefore a discontinuous first derivative (Emigh & Manogue, 2017). Plotting multiple experi-
ments (functions) on a single set of axes is common in physics and physics courses but atypical in
mathematics courses.

Third, we use representations as pedagogical tools. In particular, we introduce some represen-
tations for their pedagogical affordances even if they are not normative (i.e., used by professionals
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(a) Surfaces (b) PDM (c) Name the experiment

Figure 1: Three representations with pedagogical affordances. (a) A plastic surface and matching
contour map. (b) The Partial Derivative Machine (PDM), a mechanical analogue of thermody-
namic systems. (c) An experiment to measure

�
@V
@T

�
p

in which the temperature of a gas in a piston
is changed using a burner, and the change in volume is measured with a ruler while the pressure
is held fixed by weights on the piston.

while doing their work). For example, professionals do not make plastic surfaces (Wangberg &
Johnson, 2013) to represent functions of two variables. However, these surfaces (see Figure 1a) are
useful tools for helping students understand many multivariable calculus concepts, including par-
tial derivatives, level curves, the gradient, and line/surface/volume integrals. Similarly, the Partial
Derivative Machine (Figure 1b) is a mechanical system that was invented to help students under-
stand thermal systems because the two systems have the same underlying mathematical structure
(Sherer, Kustusch, Manogue, & Roundy, 2013). However, those who study thermal systems do
not use Partial Derivative Machines in their research.

Example from a Partial Derivatives Learning Progression
In this section, we describe selected elements from a learning progression for partial deriva-

tives that spans advanced undergraduate courses in mathematics and physics. We focus on partial
derivatives because, to physicists, partial derivatives are physically meaningful quantities. We be-
gin by describing an instructional activity that is part of our overall LP and that focuses on key
elements of the concept image for partial derivatives. Then, we highlight several results from a
research project that has informed our LP and has suggested new curricular changes.

The “Name the Experiment” Instructional Activity
A typical example of a thermodynamic system is a gas in a piston (Figure 1c). Such a system

has a number of physical properties that may be measured and controlled, such as temperature
T , pressure p, volume V , and entropy S. These properties are not independent, as the state of
the system (when in equilibrium) is defined by just two of these quantities. Each of these four
quantities—as well as any other measurable property of a gas—is referred to as a function of state,
meaning that its value is fully determined by the state of the system, which itself may be determined
by (i.e., may be a function of) any pair of state variables. Physicists denote such dependencies by
algebraic statements such as T = T (S, V ) which is to be interpreted as “we are currently thinking
of the physical temperature T as depending on the physical quantities entropy S and volume V .”
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We note that this notation is not identical to the function notation commonly taught and used in
mathematics.

When encountering partial derivatives in thermodynamics, students have difficulty understand-
ing the significance of the quantity that is being held fixed—a quantity physicists denote using a
subscript, as in

�
@V
@T

�
p

to hold the pressure fixed. The quantity to be held fixed needs to be specified
because it is not physically possible to “hold everything else fixed,” and there is no unique pair of
independent variables describing the system. Roundy, Kustusch, and Manogue (2014) introduced
an instructional activity aimed at improving students’ overall understanding of thermodynamic
variables and what is meant by holding a variable fixed. In the activity, students are prompted to
design an experiment that could be done to measure a given partial derivative. One goal of the
“Name the Experiment” activity is for students to recognize an experiment as a representation of a
particular partial derivative. Linking the experiment—a type of conceptual story—to the algebraic
symbols goes beyond simply assigning a physics meaning to each symbol. The experimental story
includes a relationship among these physical quantities over time. Figure 1c shows an example
of how one could measure

�
@V
@T

�
p

by heating a gas in a piston, while holding the pressure fixed
using unchanging weights on the piston. Determining this derivative requires measuring the small
changes �V and �T and then computing their ratio. This procedure reflects the ratio layer of
Zandieh’s (2000) framework for concept image for the derivative, as embodied in the experimental
representation introduced by Roundy, Dray, Manogue, Wagner, and Weber (2015). This framework
for ordinary derivatives is the starting point for our concept image for partial derivatives.

Research on Representational Fluency with Partial Derivatives
In this section, we present some of our research and describe how it has influenced our LP. This

research focused on how students coordinate information from different types of representations.
We gave a problem-solving task (see Figure 2a) involving the calculation of a partial derivative
from a table of data and a contour graph, neither of which is sufficient on its own to solve the
problem. Each of these representation types is commonly used by professional scientists; therefore
this task is an appropriate probe of the students’ representational fluency. This task was given as
a think-aloud interview to students (N=8) who had completed an upper-division thermodynamics
course (Bajracharya et al., 2017).

The interview task is a challenging problem with a solution requiring the coordination of many
different aspects of the concept image. The analysis suggested that, in order to identify where
students are having trouble, it is necessary to examine the individual steps in a solution method at
a high level of detail. To facilitate our analysis, we developed a visual means of displaying these
steps, which we call a transformation diagram. An example is shown in Figure 2b for one ideal-
ized solution to the interview prompt using the method of differential substitution. (Other solution
methods, such as sketching a constant-pressure path on the contour map, are also valid and were
attempted by students.) In the diagram, boxed items refer to individual representations, arrows
refer to transformations between representations, and the transformation steps are numbered for
convenience. The transformation diagram is a research tool; we do not (yet) use it as a pedagog-
ical tool. Below, we briefly discuss the interview results pertaining to the solution shown in the
diagram, and describe what these results tell us about our curriculum.

The top row of the diagram shows the three different representations of given information: a
symbolic expression, a table, and a graph. Each representation gives information about a relation-
ship between three different variables, and this information can be translated (step 1) into a purely
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 at P = 10 atm., T = 410K using the information below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P(atm.) T(K) V(cm3) 
10 300 1.32 
10 310 1.44 
10 320 1.57 
10 330 1.71 
10 340 1.85 
10 350 2.00 
10 360 2.15 
10 370 2.32 
10 380 2.49 
10 390 2.67 
10 400 2.86 
10 410 3.05 
10 420 3.25 
10 430 3.47 
10 440 3.69 
10 450 3.91 
10 460 4.15 
10 470 4.40 

Pressure P, Temperature T, and Volume 
V. 

Internal Energy U (T, V). 

(a) Interview Prompt (b) Transformation Diagram

Figure 2: An interview task (a) focused on coordinating representations, and a diagram (b) show-
ing the transformations between representations in one idealized solution.

symbolic form, such as U(T, V ), that explicitly identifies the dependent and independent variables
associated with that information. It is then possible to determine the total differential for each
representation (step 2). This pair of steps proved surprisingly challenging for some students. We
believe this is partly due to the fact that jumping directly from the given information to the total
differentials is too big a jump for many students to make. Experts often go through the symbolic
representation mentally, but students are rarely taught to use it as an intermediate step. We aim to
design instructional sequences that can leverage this result to help students identify and use such
stepping stones while solving complicated problems.

Once the total differentials have been found, they can be combined using substitution to elim-
inate dV , which does not appear in the desired partial derivative (step 3). This expression is
compared to the differential form of the multivariable chain rule, dU =

�
@U
@T

�
p
dT +

�
@U
@p

�
T

dp,
to identify the desired partial derivative as the coefficient of dT (step 4). This pair of steps was
particularly difficult for the interviewees—they were consistently unable to consolidate informa-
tion from three separate representations into a single expression. This finding has suggested a new
curricular goal for our LP, to help students learn when, how, and why it is necessary to consolidate
information in this fashion.

Once a multivariable chain rule has been determined, each of the three new partial derivatives
can be approximated (step 5) as a ratio of small changes and then read from the graph or the table
(step 6). In practice, we found that few students struggled with either of these steps, once they
had a symbolic expression for partial derivatives that were individually calculable from only a
single representation of information. This result validates this piece of our learning progression
and suggests that elements of our curriculum that focus on finding derivatives from data have been
successful and should continue to feature prominently in future instruction.
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Conclusion
We have described an expansion of the theory for learning progressions in undergraduate

courses, illustrated by the specific example of partial derivatives in mathematics and physics. Our
learning progression focuses on students’ development of a rich, expert-like concept image in-
volving multiple layers and representations, informed by extensive research on both students and
experts. This perspective has led us to develop curriculum that fosters students’ ability to go back
and forth between many fine-grained representations fluidly and spontaneously.
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