TEACHING CALCULUS COHERENTLY

Oregon State
 UNIVERSITY

Tevian Dray

I: Coherent Calculus
II: Vector Calculus Bridge Project
III: ConcepTests
IV: Calculus Concept Inventory

Coherent Calculus

co-her-ent:
logically or aesthetically ordered
cal-cu-lus:
a method of computation in a special notation

A Radical View of Calculus

- The central idea in calculus is not the limit.
- The central idea of derivatives is not slope.
- The central idea of integrals is not area.
- The central idea of curves and surfaces is not parameterization.
- The central representation of a function is not its graph.

A Radical View of Calculus

- The central idea in calculus is the differential.
- The central idea of derivatives is rate of change.
- The central idea of integrals is total amount.
- The central idea of curves and surfaces is "use what you know".
- The central representation of a function is data attached to the domain.

Coherent Calculus

coherent:

logically or aesthetically ordered

calculus:

a method of computation in a special notation

differential calculus:

a branch of mathematics concerned chiefly with the study of the rate of change of functions with respect to their variables especially through the use of derivatives and differentials

Differentials

$$
d f=\frac{d f}{d x} d x
$$

- Shorthand for limit argument
- Nonstandard analysis (hyperreal numbers)
- Smooth infinitesimal analysis
- Differential forms

"Differentials of variables"
not
"Differentials of functions"!

Differentials

$$
\begin{aligned}
d(u+c v) & =d u+c d v \\
d(u v) & =u d v+v d u \\
d\left(u^{n}\right) & =n u^{n-1} d u \\
d\left(e^{u}\right) & =e^{u} d u \\
d(\sin u) & =\cos u d u \\
d(\cos u) & =-\sin u d u \\
d(\ln u) & =\frac{1}{u} d u
\end{aligned}
$$

Derivatives

Derivatives:

$$
\frac{d}{d u} \sin u=\frac{d \sin u}{d u}=\cos u
$$

Chain rule:

$$
\frac{d}{d x} \sin u=\frac{d \sin u}{d x}=\frac{d \sin u}{d u} \frac{d u}{d x}=\cos u \frac{d u}{d x}
$$

Inverse functions:

$$
\frac{d}{d u} \ln u=\frac{d}{d u} q=\frac{d q}{d u}=\frac{1}{d u / d q}=\frac{1}{d e^{q} / d q}=\frac{1}{e^{q}}=\frac{1}{u}
$$

Derivatives

Instead of:

- chain rule
- related rates
- implicit differentiation
- derivatives of inverse functions
- difficulties of interpretation (units!)

One coherent idea:

$$
\text { "Zap equations with } d \text { " }
$$

Vector Calculus Bridge Project

- Differentials (Use what you know!)
- Multiple representations
- Symmetry (adapted bases, coordinates)
- Geometry (vectors, div, grad, curl)
- Small group activities
- Instructor's guide (in preparation)
http://www.math.oregonstate.edu/bridge

Vector Differentials ($d \overrightarrow{\boldsymbol{r}}$)

$$
\begin{aligned}
d s & =|d \overrightarrow{\boldsymbol{r}}| \\
d \overrightarrow{\boldsymbol{S}} & =d \overrightarrow{\boldsymbol{r}}_{1} \times d \overrightarrow{\boldsymbol{r}}_{2} \\
d S & =\left|d \overrightarrow{\boldsymbol{r}}_{1} \times d \overrightarrow{\boldsymbol{r}}_{2}\right| \\
d V & =\left(d \overrightarrow{\boldsymbol{r}}_{1} \times d \overrightarrow{\boldsymbol{r}}_{2}\right) \cdot d \overrightarrow{\boldsymbol{r}}_{3} \\
d f & =\vec{\nabla} f \cdot d \overrightarrow{\boldsymbol{r}}
\end{aligned}
$$

ConcepTests

- conceptual multiple-choice questions
- Eric Mazur
- http://math.arizona.edu/~lomen/conceptests.html
- Focus on a single concept
- Can't be solved using equations
- Have good multiple-choice answers
- Are clearly worded
- Are of intermediate difficulty

ConcepTest Example

Which of the graphs below could represent the derivative of the function graphed at the right?

A

B

C

D

Calculus Concept Inventory

- pretest/posttest
- measures conceptual understanding
- Jerome Epstein
- modeled on Force Concept Inventory

Example:

If a number very close to zero is divided by another number very close (but not equal) to zero, the result
(a) must be a number very close to zero
(b) must be a number close to one
(c) could be any number
(d) might not be a number at all.

Normalized Gain

$$
\text { normalized gain }=\frac{\text { gain }}{\text { possible gain }}
$$

- Traditional lectures: 15-20\%
- Active engagement: 30%

OSU:

- 7 sections under 20%
- 1 section @ 30%
- Made heavy use of ConcepTests
- Wasn’t mine...

SUMMARY

Active engagement is essential.

Concepts matter.

Coherence is nice.

