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Division Algebras
Lie Algebras
Albert Algebra

Division Algebras

Real Numbers

R

Quaternions

H = C⊕ Cj

q = (x + yi) + (r + si)j

k

j i

Complex Numbers

C = R⊕ Ri

z = x + yi

Octonions

O = H⊕Hℓ

Split Octonions

O′ = H⊕HL k

l
j i

il

kl

jl

I 2 = J2 = −U, L2 = +U
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Division Algebras
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Split Division Algebras

I 2 = J2 = −U, L2 = +U

Signature (4, 4):
x = x1U + x2I + x3J + x4K + x5KL+ x6JL+ x7IL+ x8L =⇒

|x |2 = xx = (x21 + x22 + x23 + x24 )− (x25 + x26 + x27 + x28 )

Null elements:
|U ± L|2 = 0

Projections:
(

U ± L

2

)2

=
U ± L

2

(U + L)(U − L) = 0
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The Freudenthal–Tits Magic Square

Freudenthal (1964), Tits (1966):

R C H O

R′ su(3,R) su(3,C) su(3,H) f4

C′ sl(3,R) sl(3,C) sl(3,H) e6(−26)

H′ sp(6,R) su(3, 3,C) d6(−6) e7(−25)

O′ f4(4) e6(2) e7(−5) e8(−24)

su(3,K′ ⊗K), generated by anti-Hermitian matrices.
(p ∈ K′ ⊗K and q ∈ ImK+ ImK′)

Dq =





q 0 0
0 −q 0
0 0 0





, Sq =





q 0 0
0 q 0
0 0 −2q





, Xp =





0 p 0
−p 0 0
0 0 0





Yp =





0 0 0
0 0 p

0 −p 0





, Zp =





0 0 −p

0 0 0
p 0 0
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Albert Algebra

Albert algebra: 3× 3 Hermitian matrices A over O.
Jordan product:

X ◦ Y =
1

2
(XY + YX )

Freudenthal product:

X ∗ Y = X ◦ Y −
1

2

(

(trX )Y + (trY)X
)

+
1

2

(

(trX )(trY)− tr(X ◦ Y)
)

I

Determinant:

det(X ) =
1

3
tr

(

(X ∗ X ) ◦ X
)

Idea: tr(X ◦ Y)←→ X · Y, X ∗ Y ←→ X × Y

Tevian Dray New Octonionic Representations of E6 and E7



Introduction
Decompositions

Gradings

Example
e6
e7

so(p, q) ⊂ so(p + 1, q + 1)

























so(p, q) v w

−v†

so(1, 1)
−w†

























“Conformalization:”

so(p + 1, q + 1) = so(p, q)⊕ 2× (p + q)⊕ so(1, 1)

so(p + 1, q + 1) contains so(p, q) and two p + q vectors.

Conformal group (e.g. p = 3, q = 1)

= Lorentz group + translations + conformal translations + dilation
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Decomposing e8 over e6

The Albert algebra is the minimal representation of e6.
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Decomposing e8 over e6

The Albert algebra is the minimal representation of e6.

e8(−24) = e6(−26) ⊕ 6× 27⊕ sl(3,R)
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Decomposing e8 over e6

The Albert algebra is the minimal representation of e6.

e8(−24) = e6(−26) ⊕ 6× 27⊕ sl(3,R)

The 6 of sl(3,R) are “color labels”: {I ± IL, J ± JL,K ± KL}.

[Dray, Manogue, Wilson (2023): A New Division Algebra Representation of E6]
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Decomposing e8 over e6

The Albert algebra is the minimal representation of e6.

e8(−24) = e6(−26) ⊕ 6× 27⊕ sl(3,R)

The 6 of sl(3,R) are “color labels”: {I ± IL, J ± JL,K ± KL}.

Each 27 of e6 must be an Albert algebra!

[Dray, Manogue, Wilson (2023): A New Division Algebra Representation of E6]
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Decomposing e8 over e6

The Albert algebra is the minimal representation of e6.

e8(−24) = e6(−26) ⊕ 6× 27⊕ sl(3,R)

The 6 of sl(3,R) are “color labels”: {I ± IL, J ± JL,K ± KL}.

Each 27 of e6 must be an Albert algebra!

(K ± KL)A is anti-Hermitian over O′ ⊗O – and hence in e8!

[Dray, Manogue, Wilson (2023): A New Division Algebra Representation of E6]
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e6
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Decomposing e8 over e6

The Albert algebra is the minimal representation of e6.

e8(−24) = e6(−26) ⊕ 6× 27⊕ sl(3,R)

The 6 of sl(3,R) are “color labels”: {I ± IL, J ± JL,K ± KL}.

Each 27 of e6 must be an Albert algebra!

(K ± KL)A is anti-Hermitian over O′ ⊗O – and hence in e8!

Over O, (K ± KL)I is nested; really ∼ GK±KL ∈ g′2.

[Dray, Manogue, Wilson (2023): A New Division Algebra Representation of E6]
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Freudenthal Description of e7

Θ = (φ, ρ,A,B) ∈ e7

P = (X ,Y, p, q) ∈ 56

φ ∈ e6, ρ ∈ R, A,B ∈ H3(O), X ,Y ∈ H3(O), p, q ∈ R

X 7−→ φ(X ) +
1

3
ρX + 2B ∗ Y +A q

Y 7−→ 2A ∗ X + φ′(Y)−
1

3
ρY + B p

p 7−→ tr(A ◦ Y)− ρ p

q 7−→ tr(B ◦ X ) + ρ q
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Decomposing e8 over e7

e8 = e7 ⊕ 2× 56⊕ su(2)

e7 is the conformalization of e6:
e6, two Albert algebras, and a dilation.

Each 56 is a minimal representation of e7,
generated by two Albert algebras and two scalars.

The action of e7 on 56 uses the Freudenthal product and the
trace of the Jordan product.
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Decomposing e8 over e7

e8 = e7 ⊕ 2× 56⊕ su(2)

e7 is the conformalization of e6:
e6, two Albert algebras, and a dilation.

Each 56 is a minimal representation of e7,
generated by two Albert algebras and two scalars.

The action of e7 on 56 uses the Freudenthal product and the
trace of the Jordan product.

=⇒ These products must be realized as commutators in e8!!

Tevian Dray New Octonionic Representations of E6 and E7



Introduction
Decompositions

Gradings

Example
e6
e7

Freudenthal Towers

e6(−26)

� �

K−A K+B
� �

so(1, 1)

pAI+ pAJ−

| |
J+Y I+Y
| |

I−X J−X
| |

qAJ+ qAI−

sl(2,R)

e8(−24) = e7(−25) ⊕ 2× 56⊕ sl(2,R)

K± =
1

2
(K ± KL) ...
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Two Subalgebras of O′

{I ± IL, J ± JL,K ∓ KL} ⊂ O′

These are 3-dimensional subalgebras!

The only nonzero product is (I ± IL)(J ± JL) = 2(K ∓ KL).

Tevian Dray New Octonionic Representations of E6 and E7



Introduction
Decompositions

Gradings

Example
e6
e7

Albert Algebra as Commutators

“Dot”:

[(K ± KL)X , (I ∓ IL)Y] = tr(X ◦ Y)AJ±JL

“Cross”:

[(I ± IL)X , (J ± JL)Y] = 4 (K ∓ KL)X ∗ Y

Determinant:

[

K±A, [I±A, J±A]
]

= ∓(detA)GL

[Dray, Manogue, Wilson (2023): A New Division Algebra Representation of E7]
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Graded Lie algebras

g = g−m ⊕ ...⊕ g−1 ⊕ g0 ⊕ g1 ⊕ ...⊕ gm

g0 semisimple

gp nilpotent for p 6= 0

[gp, gq] ⊂ gp+q
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Gradings of Exceptional Lie Algebras

so(p + 1, q + 1) = (p + q)⊕
(

so(p, q)⊕ so(1, 1)
)

⊕ (p + q)

e7(−25) = 27⊕
(

e6(−26) ⊕ so(1, 1)
)

⊕ 27

e8(−24) = 56⊕
(

e7(−25) ⊕ sl(2,R)
)

⊕ 56

= (2× 1)⊕ 27⊕ (2× 27)

⊕
(

e6(−26) ⊕ sl(2,R)⊕ so(1, 1)
)

⊕ (2× 27)⊕ 27⊕ (2× 1)

g = g−3 ⊕ g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 ⊕ g3
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SUMMARY

Albert algebras ⊂ e8

Wilson, Dray, and Manogue: An octonionic construction of E8 ...,
Innov. Incidence Geom. 20, 611–634 (2023); arXiv.org:2204.04996

Dray, Manogue, and Wilson: A New ... Representation of E6;
arXiv.org:2309.00078

Dray, Manogue, and Wilson: A New ... Representation of E7;
(in preparation)
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