New Octonionic Representations of E_{6} and E_{7}

Tevian Dray
(joint work with Corinne Manogue and Robert Wilson)
Department of Mathematics
Oregon State University
http://www.math.oregonstate.edu/~tevian

Oregon State
University

(supported by FQXi and the John Templeton Foundation)

With thanks to:

- Rob Wilson, who showed us how to get to E_{8};
- David Fairlie \& Tony Sudbery, who got us started in the 1980s, Paul Davies, who believed in us from the start, David Griffiths, who taught us physics (and math), and Jim Wheeler, who explained the conformal group to us;
- Jörg Schray (Ph.D. 1994),

Jason Janesky (1997-1998),
Aaron Wangberg (Ph.D. 2007), Henry Gillow-Wiles (M.S. 2008), Joshua Kinkaid (M.S. 2012), Lida Bentz (M.S. 2017), and Alex Putnam (M.S. 2017), who taught us as much as we taught them;

- John Huerta and Susumu Okubo, who helped along the way;
- and FQXi, the John Templeton Foundation, and the Institute for Advanced Study for financial support.

Division Algebras

Real Numbers

\mathbb{R}

Quaternions

$$
\begin{gathered}
\mathbb{H}=\mathbb{C} \oplus \mathbb{C} j \\
q=(x+y i)+(r+s i) j
\end{gathered}
$$

Octonions

$$
\begin{gathered}
\mathbb{C}=\mathbb{R} \oplus \mathbb{R} i \\
z=x+y i
\end{gathered}
$$

$\mathbb{O}=\mathbb{H} \oplus \mathbb{H} \ell$
Split Octonions

$$
\mathbb{O}^{\prime}=\mathbb{H} \oplus \mathbb{H} L
$$

$$
I^{2}=J^{2}=-U, L^{2}=+U
$$

Split Division Algebras

$$
I^{2}=J^{2}=-U, L^{2}=+U
$$

Signature (4, 4):

$$
\begin{aligned}
& x=x_{1} U+x_{2} I+x_{3} J+x_{4} K+x_{5} K L+x_{6} J L+x_{7} I L+x_{8} L \Longrightarrow \\
& \quad|x|^{2}=x \bar{x}=\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right)-\left(x_{5}^{2}+x_{6}^{2}+x_{7}^{2}+x_{8}^{2}\right)
\end{aligned}
$$

Null elements:

$$
|U \pm L|^{2}=0
$$

Projections:

$$
\begin{aligned}
\left(\frac{U \pm L}{2}\right)^{2} & =\frac{U \pm L}{2} \\
(U+L)(U-L) & =0
\end{aligned}
$$

The Freudenthal-Tits Magic Square

Freudenthal (1964), Tits (1966):

	\mathbb{R}	\mathbb{C}	\mathbb{H}	\mathbb{O}
\mathbb{R}^{\prime}	$\mathfrak{s u}(3, \mathbb{R})$	$\mathfrak{s u}(3, \mathbb{C})$	$\mathfrak{s u}(3, \mathbb{H})$	\mathfrak{f}_{4}
\mathbb{C}^{\prime}	$\mathfrak{s l}(3, \mathbb{R})$	$\mathfrak{s l}(3, \mathbb{C})$	$\mathfrak{s l}(3, \mathbb{H})$	$\mathfrak{e}_{6(-26)}$
\mathbb{H}^{\prime}	$\mathfrak{s p}(6, \mathbb{R})$	$\mathfrak{s u}(3,3, \mathbb{C})$	$\mathfrak{d}_{6(-6)}$	$\mathfrak{e}_{7(-25)}$
\mathbb{O}^{\prime}	$\mathfrak{f}_{4(4)}$	$\mathfrak{e}_{6(2)}$	$\mathfrak{e}_{7(-5)}$	$\mathfrak{e}_{8(-24)}$

- $\mathfrak{s u}\left(3, \mathbb{K}^{\prime} \otimes \mathbb{K}\right)$, generated by anti-Hermitian matrices. $\left(p \in \mathbb{K}^{\prime} \otimes \mathbb{K}\right.$ and $\left.q \in \operatorname{Im} \mathbb{K}+\operatorname{Im} \mathbb{K}^{\prime}\right)$

$$
\begin{gathered}
D_{q}=\left(\begin{array}{ccc}
q & 0 & 0 \\
0 & -q & 0 \\
0 & 0 & 0
\end{array}\right), \quad S_{q}=\left(\begin{array}{ccc}
q & 0 & 0 \\
0 & q & 0 \\
0 & 0 & -2 q
\end{array}\right), \quad X_{p}=\left(\begin{array}{ccc}
0 & p & 0 \\
-\bar{p} & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
Y_{p}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & p \\
0 & -\bar{p} & 0
\end{array}\right), \quad Z_{p}=\left(\begin{array}{ccc}
0 & 0 & -\bar{p} \\
0 & 0 & 0 \\
p & 0 & 0
\end{array}\right)
\end{gathered}
$$

Albert Algebra

Albert algebra: 3×3 Hermitian matrices \mathcal{A} over \mathbb{O}. Jordan product:

$$
\mathcal{X} \circ \mathcal{Y}=\frac{1}{2}(\mathcal{X} \mathcal{Y}+\mathcal{Y} \mathcal{X})
$$

Freudenthal product:

$$
\begin{aligned}
\mathcal{X} * \mathcal{Y}=\mathcal{X} \circ \mathcal{Y} & -\frac{1}{2}((\operatorname{tr} \mathcal{X}) \mathcal{Y}+(\operatorname{tr} \mathcal{Y}) \mathcal{X}) \\
& +\frac{1}{2}((\operatorname{tr} \mathcal{X})(\operatorname{tr} \mathcal{Y})-\operatorname{tr}(\mathcal{X} \circ \mathcal{Y})) \mathcal{I}
\end{aligned}
$$

Determinant:

$$
\operatorname{det}(\mathcal{X})=\frac{1}{3} \operatorname{tr}((\mathcal{X} * \mathcal{X}) \circ \mathcal{X})
$$

Idea:

$$
\operatorname{tr}(\mathcal{X} \circ \mathcal{Y}) \longleftrightarrow \mathcal{X} \cdot \mathcal{Y}, \quad \mathcal{X} * \mathcal{Y} \longleftrightarrow \mathcal{X} \times \mathcal{Y}
$$

$\mathfrak{s o}(\mathbf{p}, \mathbf{q}) \subset \mathfrak{s o}(\mathbf{p}+\mathbf{1}, \mathbf{q}+\mathbf{1})$

"Conformalization:"

$$
\mathfrak{s o}(p+1, q+1)=\mathfrak{s o}(p, q) \oplus 2 \times(\mathbf{p}+\mathbf{q}) \oplus \mathfrak{s o}(1,1)
$$

- $\mathfrak{s o}(p+1, q+1)$ contains $\mathfrak{s o}(p, q)$ and two $p+q$ vectors.

Conformal group (e.g. $p=3, q=1$)
$=$ Lorentz group + translations + conformal translations + dilation

Decomposing \mathfrak{e}_{8} over \mathfrak{e}_{6}

The Albert algebra is the minimal representation of \mathfrak{e}_{6}.

Decomposing \mathfrak{e}_{8} over \mathfrak{e}_{6}

The Albert algebra is the minimal representation of \mathfrak{e}_{6}.

$$
\mathfrak{e}_{8(-24)}=\mathfrak{e}_{6(-26)} \oplus 6 \times \mathbf{2 7} \oplus \mathfrak{s l}(3, \mathbb{R})
$$

Decomposing \mathfrak{e}_{8} over \mathfrak{e}_{6}

The Albert algebra is the minimal representation of \mathfrak{e}_{6}.

$$
\mathfrak{e}_{8(-24)}=\mathfrak{e}_{6(-26)} \oplus 6 \times \mathbf{2 7} \oplus \mathfrak{s l}(3, \mathbb{R})
$$

- The 6 of $\mathfrak{s l}(3, \mathbb{R})$ are "color labels": $\{I \pm I L, J \pm J L, K \pm K L\}$.
[Dray, Manogue, Wilson (2023): A New Division Algebra Representation of E_{6}]

Decomposing \mathfrak{e}_{8} over \mathfrak{e}_{6}

The Albert algebra is the minimal representation of \mathfrak{e}_{6}.

$$
\mathfrak{e}_{8(-24)}=\mathfrak{e}_{6(-26)} \oplus 6 \times \mathbf{2 7} \oplus \mathfrak{s l}(3, \mathbb{R})
$$

- The 6 of $\mathfrak{s l}(3, \mathbb{R})$ are "color labels": $\{I \pm I L, J \pm J L, K \pm K L\}$.
- Each 27 of \mathfrak{e}_{6} must be an Albert algebra!
[Dray, Manogue, Wilson (2023): A New Division Algebra Representation of E_{6}]

Decomposing \mathfrak{e}_{8} over \mathfrak{e}_{6}

The Albert algebra is the minimal representation of \mathfrak{e}_{6}.

$$
\mathfrak{e}_{8(-24)}=\mathfrak{e}_{6(-26)} \oplus 6 \times \mathbf{2 7} \oplus \mathfrak{s l}(3, \mathbb{R})
$$

- The 6 of $\mathfrak{s l}(3, \mathbb{R})$ are "color labels": $\{I \pm I L, J \pm J L, K \pm K L\}$.
- Each 27 of \mathfrak{e}_{6} must be an Albert algebra!
- $(K \pm K L) \mathcal{A}$ is anti-Hermitian over $\mathbb{O}^{\prime} \otimes \mathbb{O}$ - and hence in \mathfrak{e}_{8} !
[Dray, Manogue, Wilson (2023): A New Division Algebra Representation of E_{6}]

Decomposing \mathfrak{e}_{8} over \mathfrak{e}_{6}

The Albert algebra is the minimal representation of \mathfrak{e}_{6}.

$$
\mathfrak{e}_{8(-24)}=\mathfrak{e}_{6(-26)} \oplus 6 \times \mathbf{2 7} \oplus \mathfrak{s l}(3, \mathbb{R})
$$

- The 6 of $\mathfrak{s l}(3, \mathbb{R})$ are "color labels": $\{I \pm I L, J \pm J L, K \pm K L\}$.
- Each 27 of \mathfrak{e}_{6} must be an Albert algebra!
- $(K \pm K L) \mathcal{A}$ is anti-Hermitian over $\mathbb{O}^{\prime} \otimes \mathbb{O}$ - and hence in \mathfrak{e}_{8} !
- Over $\mathbb{O},(K \pm K L) \mathcal{I}$ is nested; really $\sim G_{K \pm K L} \in \mathfrak{g}_{2}^{\prime}$.
[Dray, Manogue, Wilson (2023): A New Division Algebra Representation of E_{6}]

Decomposing \mathfrak{e}_{8} over \mathfrak{e}_{6}

The Albert algebra is the minimal representation of \mathfrak{e}_{6}.

$$
\mathfrak{e}_{8(-24)}=\mathfrak{e}_{6(-26)} \oplus 6 \times \mathbf{2 7} \oplus \mathfrak{s l}(3, \mathbb{R})
$$

- The 6 of $\mathfrak{s l}(3, \mathbb{R})$ are "color labels": $\{I \pm I L, J \pm J L, K \pm K L\}$.
- Each 27 of \mathfrak{e}_{6} must be an Albert algebra!
- $(K \pm K L) \mathcal{A}$ is anti-Hermitian over $\mathbb{O}^{\prime} \otimes \mathbb{O}$ - and hence in \mathfrak{e}_{8} !
- Over $\mathbb{O},(K \pm K L) \mathcal{I}$ is nested; really $\sim G_{K \pm K L} \in \mathfrak{g}_{2}^{\prime}$.
[Dray, Manogue, Wilson (2023): A New Division Algebra Representation of E_{6}]

Freudenthal Description of \mathfrak{e}_{7}

$$
\begin{gathered}
\Theta=(\phi, \rho, \mathcal{A}, \mathcal{B}) \in \mathfrak{e}_{7} \\
\mathcal{P}=(\mathcal{X}, \mathcal{Y}, p, q) \in \mathbf{5 6} \\
\phi \in \mathfrak{e}_{6}, \rho \in \mathbb{R}, \mathcal{A}, \mathcal{B} \in \mathrm{H}_{3}(\mathbb{O}), \mathcal{X}, \mathcal{Y} \in \mathrm{H}_{3}(\mathbb{O}), p, q \in \mathbb{R} \\
\mathcal{X} \longmapsto \phi(\mathcal{X})+\frac{1}{3} \rho \mathcal{X}+2 \mathcal{B} * \mathcal{Y}+\mathcal{A} q \\
\mathcal{Y} \longmapsto 2 \mathcal{A} * \mathcal{X}+\phi^{\prime}(\mathcal{Y})-\frac{1}{3} \rho \mathcal{Y}+\mathcal{B} p \\
p \longmapsto \operatorname{tr}(\mathcal{A} \circ \mathcal{Y})-\rho p \\
q \longmapsto \operatorname{tr}(\mathcal{B} \circ \mathcal{X})+\rho q
\end{gathered}
$$

Decomposing \mathfrak{e}_{8} over \mathfrak{e}_{7}

- $\mathfrak{e}_{8}=\mathfrak{e}_{7} \oplus 2 \times \mathbf{5 6} \oplus \mathfrak{s u}(2)$
- \mathfrak{e}_{7} is the conformalization of \mathfrak{e}_{6} : \mathfrak{e}_{6}, two Albert algebras, and a dilation.
- Each $\mathbf{5 6}$ is a minimal representation of \mathfrak{e}_{7}, generated by two Albert algebras and two scalars.
- The action of \mathfrak{e}_{7} on 56 uses the Freudenthal product and the trace of the Jordan product.

Decomposing \mathfrak{e}_{8} over \mathfrak{e}_{7}

- $\mathfrak{e}_{8}=\mathfrak{e}_{7} \oplus 2 \times 56 \oplus \mathfrak{s u}(2)$
- \mathfrak{e}_{7} is the conformalization of \mathfrak{e}_{6} : \mathfrak{e}_{6}, two Albert algebras, and a dilation.
- Each 56 is a minimal representation of \mathfrak{e}_{7}, generated by two Albert algebras and two scalars.
- The action of \mathfrak{e}_{7} on 56 uses the Freudenthal product and the trace of the Jordan product.
\Longrightarrow These products must be realized as commutators in \mathfrak{e}_{8} !!

Freudenthal Towers

$$
\begin{gathered}
\mathfrak{e}_{8(-24)}=\mathfrak{e}_{7(-25)} \oplus 2 \times 5 \mathbf{6} \oplus \mathfrak{s l}(2, \mathbb{R}) \\
K_{ \pm}=\frac{1}{2}(K \pm K L) \ldots
\end{gathered}
$$

Two Subalgebras of \mathbb{O}^{\prime}

$$
\{I \pm I L, J \pm J L, K \mp K L\} \subset \mathbb{O}^{\prime}
$$

- These are 3-dimensional subalgebras!
- The only nonzero product is $(I \pm I L)(J \pm J L)=2(K \mp K L)$.

Albert Algebra as Commutators

"Dot":

$$
[(K \pm K L) \mathcal{X},(I \mp I L) \mathcal{Y}]=\operatorname{tr}(\mathcal{X} \circ \mathcal{Y}) A_{J \pm J L}
$$

"Cross":

$$
[(I \pm I L) \mathcal{X},(J \pm J L) \mathcal{Y}]=4(K \mp K L) \mathcal{X} * \mathcal{Y}
$$

Determinant:

$$
\left[K_{ \pm} \mathcal{A},\left[I_{ \pm} \mathcal{A}, J_{ \pm} \mathcal{A}\right]\right]=\mp(\operatorname{det} \mathcal{A}) G_{L}
$$

[Dray, Manogue, Wilson (2023): A New Division Algebra Representation of E_{7}]

Graded Lie algebras

$$
\mathfrak{g}=\mathfrak{g}_{-m} \oplus \ldots \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \oplus \ldots \oplus \mathfrak{g}_{m}
$$

- \mathfrak{g}_{0} semisimple
- \mathfrak{g}_{p} nilpotent for $p \neq 0$
- $\left[\mathfrak{g}_{p}, \mathfrak{g}_{q}\right] \subset \mathfrak{g}_{p+q}$

Gradings of Exceptional Lie Algebras

$$
\begin{aligned}
\mathfrak{s o}(p+1, q+1)= & (\mathbf{p}+\mathbf{q}) \oplus(\mathfrak{s o}(p, q) \oplus \mathfrak{s o}(1,1)) \oplus(\mathbf{p}+\mathbf{q}) \\
\mathfrak{e}_{7(-25)}= & \mathbf{2 7} \oplus\left(\mathfrak{e}_{6(-26)} \oplus \mathfrak{s o}(1,1)\right) \oplus \mathbf{2 7} \\
\mathfrak{e}_{8(-24)}= & \mathbf{5 6} \oplus\left(\mathfrak{e}_{7(-25)} \oplus \mathfrak{s l}(2, \mathbb{R})\right) \oplus \mathbf{5 6} \\
= & (2 \times \mathbf{1}) \oplus \mathbf{2 7} \oplus(2 \times \mathbf{2 7}) \\
& \oplus\left(\mathfrak{e}_{6(-26)} \oplus \mathfrak{s l}(2, \mathbb{R}) \oplus \mathfrak{s o}(1,1)\right) \\
& \oplus(2 \times \mathbf{2 7}) \oplus \mathbf{2 7} \oplus(2 \times \mathbf{1}) \\
\mathfrak{g}= & \mathfrak{g}_{-3} \oplus \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \oplus \mathfrak{g}_{2} \oplus \mathfrak{g}_{3}
\end{aligned}
$$

SUMMARY

Albert algebras $\subset \mathfrak{e}_{8}$

- Wilson, Dray, and Manogue: An octonionic construction of E_{8}..., Innov. Incidence Geom. 20, 611-634 (2023); arXiv.org:2204.04996
- Dray, Manogue, and Wilson: A New ... Representation of E_{6}; arXiv.org:2309.00078
- Dray, Manogue, and Wilson: A New ... Representation of E_{7}; (in preparation)

