A BASIC COURSE IN PROBABILITY THEORY, 2nd Edition: ERRATA

The red describes the change and location, while the black typeset is the correct content.

TECHNICAL CORRECTIONS

- 1. p.31, Remark 2.1: Replace Chapter IV by Chapter VIII Chapter VIII
- 2. p.46, 18-20 lines down : There is a gap in the argument in Example 9. Replace by the following. Let S = {S_n}[∞]_{n=0}, φ⁻(x) = P_x(S hits abefore b) and φ⁺(x) = P_x(S hits b before a) for a < x < b. Fix arbitrary a < x < b and condition on S^x₁: φ[±](x) = φ[±](x)¹/₂ + φ[±](x)¹/₂, φ⁻(a) = 1, φ⁻(b) = 0, and φ⁺(a) = 0, φ⁺(b) = 1. The linear solutions (3.28) follow from the algebraically equivalent equations φ[±](x) φ[±](x-1) = φ[±](x+1) φ[±](x), a < x < b, by summing over x ∈ [a + 1, b 1]. Apply boundary values to determine c[±]. Let a → -∞. By (3.28) and continuity properties of countably additive measures: P_x(S reaches b) = 1. Let b → ∞. Then P_x(S reaches a) = 1. In particular, from x + 1 it is sure to reach x and from x 1 it is sure to reach x. Thus S started at any x ∈ Z is certain to eventually return to x.
- 3. p. 57, 7 lines up: Replace "integrability" by inequality. ... where the inequality follows from ...
- 4. p. 57, 5 lines up: Open a parenthesis (and delete the factor 'y' from first equation of display (3.12) $(\int_{[1,\max\{1,M_n\}]} \frac{1}{y} dy) dP$
- 5. p. 93, 14 lines up: Replace *Involution* by *Idempotent* (ii) (Idempotent)
- 6. p. 97, 7 & 8 lines down: Replace τ by h^* as indicated $Q_-(dy) = \varphi(h^*)^{-1} e^{h^* y} Q_-(dy)$
- 7. p. 97, 9 lines down: Replace h^* by h as indicated $\psi(h) = \mathbb{E}e^{h\tilde{Y}_j} =$
- 8. p. 97, 12 lines down: Replace '=' by $\geq \int_{\{(y_1,...,y_n): \sum_{j=1}^n y_j \geq 0\}}$
- 9. p. 97, 13 lines down: Replace '=' by $\geq \int_{\{(y_1,...,y_n):\sum_{i=1}^n y_i \geq 0\}}$
- 10. p. 97, 14 lines down: Raise $\sigma \sqrt{nx}$ to be part of exponent $\int_{[0,\infty)} e^{-h^* \sigma \sqrt{nx}} F_n(dx)$
- 11. p. 97, 3 lines up: Replace τ by $h^* |R_n| = \varphi^n(h^*)\epsilon_n$
- 12. p. 97, last line: Replace X_1 by $\tilde{Y}_1 = \frac{\mathbb{E}|\tilde{Y}_1|^3}{\sigma^3 \sqrt{n}}$
- 13. p.98, 8 lines up: Replace e^{aY} by e^{ha} on right side of inequality $e^{hY} \leq \frac{b-Y}{b-a}e^{ha} + \frac{Y-a}{b-a}e^{hb}$
- 14. p. 127, 6 lines up: Replace = m by $\leq m$ $|\Phi'(x)| \leq m < 2/5$
- 15. p. 127, display (6.62): Replace σn by $\sigma \sqrt{n}$ in argument for $\varphi^n = \varphi^n(\frac{\xi}{\sigma\sqrt{n}})$
- 16. p. 128, last line of (6.64): Replace 1 by ρ as indicated $\frac{\rho}{6\sigma^3 n^{\frac{3}{2}}}$

- 17. p. 128, last display in the proof of Theorem 6.17: Replace $\frac{98}{99}$ by 9.6 and divide expression in brackets by T on right side of inequality $\leq [\frac{8}{9}\sqrt{\pi} + 9.6]/T$.
- 18. p.128, last line in the proof of Theorem 6.17: Replace 4π by the indicated bound ... smaller than $3\pi\rho/(\sigma^3\sqrt{n})$.
- 19. p. 134, Exercise 25(i): Insert superscript n for φ^n in displayed equation. $\int_{[-\pi,\pi)^k} \varphi^n(\xi) d\xi$
- 20. p. 136, 6 lines down: Delete 'given by' and insert for $Z_k = S_k S_{k-1}$, ..., k = 0, 1, ..., n, for $Z_k = S_k S_{k-1}$,
- 21. p. 136, 8 lines down: Replace Y_{k+1} by Z_{k+1} in displayed equation and insert period at end of display. $\sqrt{n}Z_{k+1}(t-\frac{k}{n})+\dots$
- 22. p.149, 10 lines down: Replace $|\mathbb{E}$ by $\langle Q_n(\{\omega \in C[0,1] : |\omega_0| > B\}) < \eta, \quad n = 1, 2, ...$
- 23. p.149, 12 lines down: Replace $|\mathbb{E}\epsilon$ by $\geq \epsilon$ and replace $|\mathbb{E}\eta$ by $<\eta$ $Q_n(\{\omega \in C[0,1] : \nu_{\omega}(\delta) \geq \epsilon\}) < \eta$, $n \geq 1$
- 24. p. 151, 2 lines down: Replace 'p' by 'M' in exponent of 2 belong to $\{0, 1, 2, \dots, 2^{M+1}\}$.
- 25. p.151, 2 lines down: Replace L_n by L_M $u^*, v^* \in L_M$
- 26. p. 151, 2 lines down: Replace -n 1 by -M 1 in the exponent $|u u^*| \le 2^{-M-1}$
- 27. p. 155, 6 lines down: Replace \Rightarrow by comma. Suppose that $d_{BL}(Q_m, Q) \rightarrow 0$
- 28. p. 172, 21 lines down: Delete 'is product space' following 'the product space' ... i.e., the product space, $X_t(\omega) = x_t$
- 29. p.238, line before Lemma 1: Replace 'Alexandrov's theorem 7.1' by 'Proposition 1.6' Proposition 1.6
- 30. p. 242, Theorem 1.3, 3rd line: Replace S by C(S) then \mathcal{H} is dense in C(S), i.e., $\overline{\mathcal{H}} = C(S)$.