A BASIC COURSE IN PROBABILITY THEORY, 2nd Edition: ERRATA

The red describes the change and location, while the black typeset is the correct content.

TECHNICAL CORRECTIONS

1. p.31, Remark 2.1: Replace Chapter IV by Chapter VIII Chapter VIII
2. p.46, 18-20 lines down: There is a gap in the argument in Example 9. Replace by the following. Let $S=\left\{S_{n}\right\}_{n=0}^{\infty}, \varphi^{-}(x)=P_{x}\left(S\right.$ hits abefore b) and $\varphi^{+}(x)=P_{x}(S$ hits b before a) for $a<x<b$. Fix arbitrary $a<x<b$ and condition on $S_{1}^{x}: \varphi^{ \pm}(x)=\varphi^{ \pm}(x) \frac{1}{2}+\varphi^{ \pm}(x) \frac{1}{2}, \varphi^{-}(a)=$ $1, \varphi^{-}(b)=0$, and $\varphi^{+}(a)=0, \varphi^{+}(b)=1$. The linear solutions (3.28) follow from the algebraically equivalent equations $\varphi^{ \pm}(x)-\varphi^{ \pm}(x-1)=\varphi^{ \pm}(x+1)-\varphi^{ \pm}(x), a<x<b$, by summing over $x \in[a+1, b-1]$. Apply boundary values to determine $c^{ \pm}$. Let $a \rightarrow-\infty$. By (3.28) and continuity properties of countably additive measures: $P_{x}(S$ reaches b$)=1$. Let $b \rightarrow \infty$. Then $P_{x}(S$ reaches a $)=1$. In particular, from $x+1$ it is sure to reach x and from $x-1$ it is sure to reach x. Thus S started at any $x \in \mathbb{Z}$ is certain to eventually return to x.
3. p. 57, 7 lines up: Replace "integrability" by inequality. ... where the inequality follows from ...
4. p. 57,5 lines up: Open a parenthesis (and delete the factor ' y ' from first equation of display (3.12) $\quad\left(\int_{\left[1, \max \left\{1, M_{n}\right\}\right]} \frac{1}{y} d y\right) d P$
5. p. 93, 14 lines up: Replace Involution by Idempotent (ii) (Idempotent)
6. p. 97, $7 \& 8$ lines down: Replace τ by h^{*} as indicated $\quad Q_{-}(d y)=\varphi\left(h^{*}\right)^{-1} e^{h^{*} y} Q_{-}(d y)$
7. p. 97, 9 lines down: Replace h^{*} by h as indicated $\quad \psi(h)=\mathbb{E} e^{h \tilde{Y}_{j}}=$
8. p. 97, 12 lines down: Replace ' $=$ ' by $\geq \int_{\left\{\left(y_{1}, \ldots, y_{n}\right): \sum_{j=1}^{n} y_{j} \geq 0\right\}}$
9. p. 97, 13 lines down: Replace ${ }^{\prime}=$ ' by $\geq \int_{\left\{\left(y_{1}, \ldots, y_{n}\right): \sum_{j=1}^{n} y_{j} \geq 0\right\}}$
10. p. 97, 14 lines down: Raise $\sigma \sqrt{n} x$ to be part of exponent $\int_{[0, \infty)} e^{-h^{*} \sigma \sqrt{n} x} F_{n}(d x)$
11. p. 97, 3 lines up: Replace τ by $h^{*} \quad\left|R_{n}\right|=\varphi^{n}\left(h^{*}\right) \epsilon_{n}$
12. p. 97, last line: Replace X_{1} by $\tilde{Y}_{1} \frac{\mathbb{E}\left|\tilde{Y}_{1}\right|^{3}}{\sigma^{3} \sqrt{n}}$
13. p.98, 8 lines up: Replace $e^{a Y}$ by $e^{h a}$ on right side of inequality $e^{h Y} \leq \frac{b-Y}{b-a} e^{h a}+\frac{Y-a}{b-a} e^{h b}$
14. p. 127, 6 lines up: Replace $=m$ by $\leq m \quad\left|\Phi^{\prime}(x)\right| \leq m<2 / 5$
15. p. 127, display (6.62): Replace σn by $\sigma \sqrt{n}$ in $\operatorname{argument}$ for $\varphi^{n} \varphi^{n}\left(\frac{\xi}{\sigma \sqrt{n}}\right)$
16. p. 128 , last line of (6.64): Replace 1 by ρ as indicated $\frac{\rho}{6 \sigma^{3} n^{\frac{3}{2}}}$
17. p. 128 , last display in the proof of Theorem 6.17 : Replace $\frac{98}{99}$ by 9.6 and divide expression in brackets by T on right side of inequality $\leq\left[\frac{8}{9} \sqrt{\pi}+9.6\right] / T$.
18. p.128, last line in the proof of Theorem 6.17:

Replace 4π by the indicated bound \ldots smaller than $3 \pi \rho /\left(\sigma^{3} \sqrt{n}\right)$.
19. p. 134, Exercise 25(i): Insert superscript n for φ^{n} in displayed equation. $\int_{[-\pi, \pi)^{k}} \varphi^{n}(\xi) d \xi$
20. p. 136, 6 lines down: Delete 'given by' and insert for $Z_{k}=S_{k}-S_{k-1}, \ldots k=0,1, \ldots, n$, for $Z_{k}=S_{k}-S_{k-1}$,
21. p. 136, 8 lines down: Replace Y_{k+1} by Z_{k+1} in displayed equation and insert period at end of display. $\quad \sqrt{n} Z_{k+1}\left(t-\frac{k}{n}\right)+\ldots$
22. p.149, 10 lines down: Replace $\mid \mathbb{E}$ by $<Q_{n}\left(\left\{\omega \in C[0,1]:\left|\omega_{0}\right|>B\right\}\right)<\eta, \quad n=1,2, \ldots$
23. p.149, 12 lines down: Replace $\mid \mathbb{E} \epsilon$ by $\geq \epsilon$ and replace $\mid \mathbb{E} \eta$ by $<\eta \quad Q_{n}\left(\left\{\omega \in C[0,1]: \nu_{\omega}(\delta) \geq\right.\right.$ $\epsilon\})<\eta, \quad n \geq 1$
24. p. 151, 2 lines down: Replace ' p ' by ' M ' in exponent of 2 belong to $\left\{0,1,2, \ldots, 2^{M+1}\right\}$.
25. p.151, 2 lines down: Replace L_{n} by $L_{M} u^{*}, v^{*} \in L_{M}$
26. p. 151,2 lines down: Replace $-n-1$ by $-M-1$ in the exponent $\left|u-u^{*}\right| \leq 2^{-M-1}$
27. p. 155,6 lines down: Replace \Rightarrow by comma. Suppose that $d_{B L}\left(Q_{m}, Q\right) \rightarrow 0$
28. p. 172, 21 lines down: Delete 'is product space' following 'the product space' ... i.e., the product space, $X_{t}(\omega)=x_{t}$
29. p.238, line before Lemma 1: Replace 'Alexandrov's theorem 7.1 ' by 'Proposition 1.6 ' Proposition 1.6
30. p. 242, Theorem 1.3, 3rd line: Replace S by $C(S)$ then \mathcal{H} is dense in $C(S)$, i.e., $\overline{\mathcal{H}}=C(S)$.

