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Abstract Continuity of local time for Brownian motion ranks among the most

notable mathematical results in the theory of stochastic processes. This article ad-

dresses its implications from the point of view of applications. In particular an ex-

tension of previous results on an explicit role of continuity of (natural) local time

is obtained for applications to recent classes of problems in physics, biology and

finance involving discontinuities in a dispersion coefficient. The main theorem and

its corollary provide physical principles that relate macro scale continuity of deter-

ministic quantities to micro scale continuity of the (stochastic) local time.

1 Introduction

Quoting from the backcover of the intriguing recent monograph Barndorff-Nielsen

and Shiriaev (2010):

Random change of time is key to understanding the nature of various stochastic processes
and gives rise to interesting mathematical results and insights of importance for the mod-
elling and interpretation of empirically observed dynamic processes
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This point could hardly have been more aptly made with regard to the perspective

of the present paper.

The focus of this paper is on identifying the way in which continuity/discontinuity

properties of certain local times of a diffusive Markov process inform interfacial

discontinuities in large scale concentration, diffusion coefficients, and transmission

rates. For these purposes one may ignore processes with drift, and focus on disconti-

nuities in diffusion rates and/or specific rate coefficients. This builds on related work

of the authors where the focus was on interfacial effects on other functionals such

as occupation time and first passage times; see Ramirez et al. (2013) for a recent

survey. We also restrict our study to one-dimensional processes, some extensions to

higher dimensions can be found in Ramirez (2011).

Dispersion problems in the physical sciences are often described by a second

order linear parabolic equation in divergence form that results from a conservation

law applied to the concentration of some substance. A particular class of interest for

this paper is that of the one-dimensional Fokker-Plank equation (1) with discontin-

uous parameters D and η and specified discontinuities in the concentration. More

precisely, we consider the solution u(t,y) to the following problem for y ∈ R \ I,

t ! 0,

η ∂ u
∂ t

=
∂
∂y

(
1
2 D

∂ u
∂y

)
,

[
D

∂ u
∂y

]

x j

= 0, β+
j u(t,x+j ) = β−

j u(t,x−j ), j ∈ Z. (1)

with a prescribed initial condition u(0,y) = u0(y), y ∈ R, and under the following

assumptions.

Assumptions 1 We consider a discrete set of “interfaces”

I := {x j : j ∈ Z}, x0 := 0, x j < x j+1, j ∈ Z, (2)

with no accumulation points. The functions D and η exhibit jump discontinuities

only at points in I:

[D]x j := D(x+j )−D(x−j ) ̸= 0, [η ]x j := η(x+j )−η(x−j ) ̸= 0, j ∈ Z. (3)
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We further assume that D and η are functions of bounded variation in R with η

being continuous, and D differentiable in (x j,x j+1) for all j ∈ Z. Finally, there exist

constants 0 < k < K < ∞ such that

k " D(x)" K, k " η(x)" K, x ∈ R. (4)

The constants {β±
j } are strictly positive and such that

∑
j∈Z

β+
j

β−
j
< ∞. (5)

Equation (1) is often referred to as a continuity equation for the conserved quan-

tity η(y)u(t,y); Fourier’s flux law for heat conduction and the corresponding Fick’s

law for diffusion being among the most notable such occurrences. The right-side

of the pde is the divergence of the diffusive flux 1
2 D ∂ u

∂y of u, and the first bracket

condition is continuity of flux at the interfaces.

In Jean Perrin’s historic determination of Avogadro’s number NA from observa-

tions of individual particle paths submerged in a homogeneous medium, the pro-

cedure was clear (Perrin, 1909). Einstein had provided a twofold characterization

of the diffusion coefficient D in Fick’s law: first as a function of variables at the

molecular scale, including NA; and second, as the rate of growth of the variance

of the position of particles in time. This meant that D, and therefore NA could be

statistically estimated.

If one regards (1) as a given physical law that embodies certain interfacial discon-

tinuities at points in I, then the question we want to address is what corresponding

features should be specified about the paths of the stochastic process? Our basic

goal is to show that the answer resides in suitably interpreted continuity properties

of local time.

In an informal conversation where we posed this question to David Aldous, his

reply was that he wouldn’t use a pde to model the phenomena in the first place!

Of course this perspective makes the question all the more relevant to probabilistic

modeling. The mathematical (probabilistic) tools are clearly available to do this,

and much of the objective of this paper is to identify the most suitable way in which
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to express the stochastic model in relation to the underlying phenomena. It will be

shown that the interfacial conditions at the pde level, can be characterized in terms of

the continuity properties of a certain local time process of the associated diffusion.

In this regard, the continuity of local time of standard Brownian motion will be seen

to indirectly play a pivotal role.

The evolution problem (1) can be viewed as the forward equation ∂ u
∂ t = L ∗u for

the operator L ∗ : Dom(L ∗)→ L2(dy) given by

L ∗ f :=
1
η

d
dy

(
1
2 D

d f
dy

)
, (6)

for functions f ∈ Dom(L ∗) satisfying, besides other decay conditions, that

[
D f ′

]
x j
= 0, β+

j f ′(x+j ) = β−
j f ′(x−j ), j ∈ Z. (7)

Due to the presence of the coefficient η(y), taking the adjoint in L2(dy) of L ∗

does not generally yield an operator L that generates a positive contraction semi-

group on C0(R). In fact, integration by parts yields,

L g :=
d

dx

(
1
2 D

d
dx

(
g
η

))
(8)

and any g ∈ Dom(L ) will satisfy the following interfacial conditions:

[
g
η

]

x j

= 0,
D(x+j )

β+
j

(
g
η

)′
(x+j ) =

D(x−j )
β−

j

(
g
η

)′
(x−j ). (9)

We refer to the corresponding evolution problem ∂ v
∂ t = L v as the backwards equa-

tion.

While physical laws are often formulated on the basis of conservation principles,

not all such models are apriori conceived in conservation form. In fact some may

be explicitly formulated as a specification of coefficients via a Kolmogorov back-

ward equation with an operator of the form (10) below, or directly in the form of a

stochastic differential equation; for a variety of examples of both in the present con-

text, see Berkowitz et al. (2009); Hill (1995); Hoteit et al. (2002); Kuo et al. (1999)

from hydrolgy, Cantrell and Cosner (2004); McKenzie et al. (2009); Ovaskainen
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(2004); Ramirez (2012); Schultz and Crone (2005) biology and ecology, Nilsen and

Sayit (2011) finance, Guo et al. (2010) astrophysics, and Matano and Palma (2008)

from physical oceanography.

To accommodate the broad class of such possible examples, the present paper

follows the following general setting. Let L be as in (8) and define the operator A

by

A g :=
1
η

L (ηg) =
1
η

d
dx

(
1
2 D

dg
dx

)
, (10)

The interfacial conditions satisfied by a function g ∈ Dom(A ) follow from (9) and

can generally be written in the form:

[g]x j = 0, λ jg′(x+j ) = (1−λ j)g′(x−j ), j ∈ Z (11)

for some values Λ := {λ j : j ∈ Z}⊂ (0,1) for which we further assume the follow-

ing decay condition (equivalent to (5) under (4)):

∑
j∈Z

1−λ j

λ j
< ∞. (12)

In Section 2 we construct a Feller process X = {X(t) : t ! 0} with genera-

tor (A ,Dom(A )). The significance of this association is the following: the fun-

damental solution p(t,x,y) to the backwards evolution problem ∂ v
∂ t = A v is pre-

cisely the transition probability density of X(t). Namely, for an initial condition

v(0,x) = v0(x), the solution v(t,x) can be written as

v(t,x) =
∫

R
p(t,x,y)v0(y)dy = E [v0(X(t))|X(0) = x] . (13)

It follows, in turn, that the fundamental solution to the original forward problem (1)

is given by

q(t,x,y) =
η(x)
η(y)

p(t,x,y). (14)

This defines the interpretation we will use with respect to the physics of (1) as a

Fokker-Plank equation, and to relate it with the diffusion process X .

Remark 1. One might note that this is the form of Doob’s h-transform under the fur-

ther constraint that η is harmonic with respect to A . However this latter condition is
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generally not appropriate for the physical examples of interest in the present paper.

On the other hand, were it applicable it could provide an altervative approach to our

problem via conditioning, e.g. see Perkowski and Ruf (2012).

In order to identify how the interfacial conditions (11) affect the sample paths of

the process X , we will look at the behavior of the natural local time of X at points

in I. This notion of local time was introduced in Appuhamillage et al. (2013) as the

density of the occupation time operator with respect to Lebesgue measure. Namely

for A ∈ B(R), ℓX (t,x) is a previsible process, increasing with respect to t, such that
∫ t

0
1A(X(s))ds =

∫

A
ℓX (t,x)dx. (15)

Our main result is the following:

Theorem 2. Suppose D,η satisfy Assumptions 1. Let X be the Feller process with

infinitesimal generator (A ,Dom(A )) defined by (10, 11) and Λ satisfying (12).

Then
ℓX (t,x+j )
ℓX (t,x−j )

=
η(x+j )
η(x−j )

D(x−j )
D(x+j )

λ j

1−λ j
, j ∈ Z. (16)

with probability one, for any t such that ℓX (t,x+j )> 0.

Corollary 1. Suppose D,η and {β±
j : j ∈ Z} satisfy Assumptions 1. Let u be the

solution to the forward equation (1) and X its associated Feller process. Then

ℓX (t,x+j )
ℓX (t,x−j )

=
η(x+j )
η(x−j )

β−
j

β+
j
=

η(x+j )u(t,x
+
j )

η(x−j )u(t,x
−
j )

, j ∈ Z. (17)

with probability one, for any t such that ℓX (t,x+j )> 0.

The main principles to be taken from these mathematical results are as follows.

First, Theorem 2 and, in particular, its corollary demonstrate how the continuity

properties of local time are reflected in the specifications of (1) at interfaces. It is

noteworthy that under the continuity of flux condition, the diffusion coefficient plays

no role with regard to continuity of local time. In particular, its determination would

continue to be by statistical considerations of (local) variances along the lines used

by Perrin, while the jumps in the natural local time are a manifestation of other
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characteristics of the model. That is, the relative values of η for given values of

β+
j /β−

j , or vice-versa, are reflected in the local time behaviors of sample paths at

interfacial points. An example is furnished below in which the β and η parameters

are relative manifestations of geometries of both the medium and the dispersing

individuals.

Under continuity of flux, the continuity of local time is equivalent to continuity

of the conserved quantity ηu. In particular if η ≡ 1, or more generally is contin-

uous, the continuity of u is a manifestation of the continuity of local time. These

connections between continuities at the macro and micro scale are dependent on the

continuity of flux in defining the physical model.

A second principle arises for those contexts in which (10) is a prescribed back-

ward equation with η = β ≡ 1, e.g. as in financial mathematics, Barndorff-Nielsen

and Shiriaev (2010). From a physical perspective the interface condition is not a

continuity of flux condition, however continuity of local time occurs if and only if

λ j =
D+

j
D−

j +D+
j
, j = 1,2, . . . .

1.1 Example: piecewise constant coefficients.

The scope and interest of our result may be illustrated with a single interface exam-

ple motivated by applications to ecological dispersion in heterogeneous media. Con-

sider a population of erratically moving individuals occupying an infinitely long,

two-dimensional duct as depicted in Figure 1. Let A(y) be the cross-sectional area

of the duct, and 1/η(y) the biomass of any individual occupying the cross-section

at a distance y from the interface y = 0. Let c(t,(y, ỹ)) denote the concentration of

biomass, which is assumed continuous throughout, ỹ denoting the transversal spa-

tial variable. Then η(y)c(t,(y, ỹ)) is the concentration of individuals, for which we

assume the following modification to Fick’s law: the flux of individuals is given by

−DI2×2∇c, namely proportional to the gradient of the concentration of biomass. If

D,A and η are taken to be piece-wise constant:
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D(y) :=

{
D+ if y > 0
D− if y " 0,

, A(y) :=

{
A+ if y > 0
A− if y " 0

, η(y) :=

{
η+ if y > 0
η− if y " 0

,

(18)

then the concentration of biomass per unit length

u(t,y) =
∫

A(y)
c(t,(y, ỹ))dỹ (19)

satisfies the following one-dimensional forward problem

∂ u
∂ t

=
1
η

∂
∂y

(
1
2 D

∂ u
∂y

)
,

[
D

∂ u
∂y

]

0
= 0,

1
A− u(t,0−) =

1
A+

u(t,0+), (20)

which is of the form (1) with β±
0 = 1/A±. The corresponding backwards operator A

is given by (10) and (11) with λ0 =
A+D+

A+D++A−D− ; let X denote the diffusion process

generated by A .

Given an initial biomass distribution u0, by virtue of (14), the solution to (20) can

be written in terms of the transition probabilities of X as:

u(t,y) =
1

η(y)

∫

R
u0(x)η(x) p(t,x,y)dx. (21)

Namely, p(t,x,y) is the density function of the location X(t) of individuals that

started at x, and the paths of X may be regarded as a model for the random movement

of the individuals.

As in all cases of an operator A of the form (10) with piece-wise constant coeffi-

cients at a single interface, the associated process X may be expressed explicitly by

re-scaling an appropriate skew Brownian motion (see Appuhamillage et al. (2013,

2011); Ramirez et al. (2013); Ouknine (1991)). Specifically,

X(t) =

√
D
(
Bα(D,A,η)(t)

)

η
(
Bα(D,A,η)(t)

)Bα(D,A,η)(t) (22)

where Bα(D,A,η) is skew Brownian motion with transmission probability

α(D,A,η) =
A+

√
η+D+

A+
√

η+D++A−
√

η−D−
. (23)
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The effect of the interface on the sample paths of the process X can be readily

observed in the stochastic differential equation solved by X :

X(t) =
∫ t

0

√
D(X(r))
η(X(r))

dB(r)+
A+D+−A−D−

2A+D+
LX
+(t,x), (24)

where B denotes standard Brownian motion, and {LX
+(t,x) : t ! 0} is the right semi-

martingale local time at x of the unknown process X . See Revuz and Yor (1999) for

details. For the current example, the right continuous version of natural local time

is given by ℓX
+(t,x) := η(x)

D(x)LX
+(t,x), and for every t > 0, ℓX

+(t, ·) is discontinuous at

x = 0 with probability one, with a jump characterized by (16).

yD+D−

A−

A+0

ỹ

Fig. 1 Schematics of an example of a problem leading to a one-dimensional diffusion process with
one single interface at y = 0.

The nominal effect that a single interface exerts on the particle paths can now

be elucidated by looking into further properties of skew Brownian motion, and nat-

ural local time. On one hand, (14) and the value of α(D,λ ,η), inform us that for

an initial condition concentrated at y = 0, u0 = δ0(dy) in (1), the individuals will

asymmetrically distribute on either side of the interface:
∫ ∞

0
q(t,0,y)dy = P(X(t)> 0

∣∣X(0) = 0) =
η−

η+
α(D,λ ,η), for all t > 0. (25)

On the other hand, natural local time ℓX (t,x) can be related to the time the process

spends in a small vicinity of x. Of particular interest is the relative times particles
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spend at either side of zero. It follows from Corollary (1) that:

lim
ε→0

∫ t
0 1(0,ε)(X(s))ds

∫ t
0 1(−ε,0)(X(s))ds

=
η+A+

η−A− , t > 0, a.s. (26)

1.2 Notation and outline

The analytical treatment here revolves around functions f : R → R that are mea-

surable with respect to the Borel σ -algebra B(R). The main function space is

Cb(R), the space of real valued continuous bounded functions. B(R) denotes, in

turn, bounded measurable functions on R. For a measure µ on (R,B(R)), L2(µ)

denotes the Hilbert space { f : R→R;
∫
R f 2(x)µ(dx)< ∞}. The right and left limits

of a function at x are denoted by f (x+) and f (x−), and their difference is the jump

operator [ f ]x = f (x+)− f (x−). Whenever defined, the derivative of f is d f
dx or f ′,

while f ′±(x) = f ′(x±) denote its left and right derivatives at x.

For the general theory of one-dimensional diffusion processes used here, we refer

the reader to Revuz and Yor (1999). A diffusion process consists of the measurable

space (Ω ,F ) and a family of probability measures {Px : x ∈ R}. A sample path of

the process is X = {X(t) : t ! 0} ∈ Ω . Under Px, the paths of X “start at x”, namely,

Px(X(0) = x) = 1 for all x ∈ R. Only diffusions on R, with infinite lifetime are

considered here. Much of the analysis of such processes is undertaken in terms of

their scale and speed measures, which we treat as follows. For a∈R, the hitting time

of a by X is HX
a = inf{t > 0 : X(t) = a} and the scale measure s(dx) is characterized

by

Px(HX
b < HX

a ) =
s((a,x))
s(a,b)

, a < x < b. (27)

Every scale measure in this paper will be absolutely continuous with respect to

Lebesgue measure, s(dx) = s′(x)dx. We also define, without room for confusion,

the scale function

s : R→ R, s(x) :=
∫ x

0
s′(y)dy. (28)
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The speed measure m(dx) of X is the unique Radon measure such that

Ex(HX
a ∧HX

b ) =
∫

R

[s(x∧ y)− s(a)] [s(b)− s(x∨ y)]
s(b)− s(a)

m(dy), a < x < b. (29)

The infinitesimal generator of the process can be written in terms of the speed and

scale measures as follows

A f =
d

dm
d
ds

f , f ∈ Dom(A ), (30)

in the sense that,
d f
ds

(x2)−
d f
ds

(x1) =
∫ x2

x1
A f (x)m(dy). (31)

Moreover,

f (Xt)− f (X0)−
∫ t

0
A f (X(s))ds, f ∈ Dom(A ), x ∈ R (32)

is a martingale. For a given operator (A ,Dom(A )) if (32) holds, we say that X

solves the martingale problem for A .

The rest of the paper is organized as follows. In the next section we provide a

construction of the diffusion process X associated to the operator (10) and identify a

stochastic differential equation for which X is the unique strong solution. In section

3 we define three related but different notions of local time, including the natural

local time and characterize its spatial continuity properties. The proof of the main

results 2 and 1 follows directly from such characterization.

2 On the Diffusion X

As illustrated in Ramirez et al. (2013), the derivation of an associated process to an

evolution operator (1) can be achieved in several ways, including the general theory

of Dirichlet forms, or by martingale methods. Here, we “read off” the speed and

scale measures from the backward operator written in the form (30), and construct

the appropriate process via a stochastic differential equation. A similar approach
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was carried out in the case of piecewise constant coefficients by Ramirez (2011),

and will be extended here to the present framework.

Recall Assumptions 1 on I, D and η , and let (A ,Dom(A )) be as in (10), (11).

Recursively define a sequence ϕ j, j ∈ Z by

ϕ j

ϕ j−1
=

D(x+j )(1−λ j)

D(x−j )λ j
=

β+
j

β−
j
, j ∈ Z, ϕ0 := 1. (33)

Then the generator (A ,Dom(A )) given by (10) may be equivalently expressed by

A f (x) =
ϕ j

η(x)
d

dx

(
D(x)
2ϕ j

d f
dx

)
, x ∈ (x j,x j+1), j ∈ Z, (34)

acting on functions in Cb(R) that are twice continuously differentiable within each

(x j,x j+1) and such that

D(x−j )
ϕ j−1

f ′(x−j ) =
D(x+j )

ϕ j
f ′(x+j ), j ∈ Z. (35)

In view of (30) and (34), we take m(dx) := m′(x)dx and s(dx) = s′(x)dx with

densities prescribed on R\ I by

s′(x) =
2ϕ j

D(x)
, m′(x) =

η(x)
ϕ j

, x ∈ (x j,x j+1), j ∈ Z. (36)

The existence of an associated diffusion process is established in the following

theorem.

Theorem 3. Suppose D and η satisfy Assumptions 1, and Λ satisfies (12). Let m

and s be measures with densities given by (36). Then there exist a Feller diffusion

X = (Ω ,F ,{Px : x ∈R}) with speed and scale measures m and s, respectively, and

whose transition probability function p(t,x, dy) is the fundamental solution to the

backwards equation ∂ v
∂ t = A v with (A ,Dom(A )) given by (34), (35). Moreover, q

in (14) is the fundamental solution to the forward problem (1).

Proof. Note first that the boundedness assumptions on D and η , together with the

fact that I has no accumulation points, make m and s Radon measures. Since m

and s are assumed to have piecewise continuous densities, (30) takes the form

A f (x) = 1
m′(x+)

d
dx

(
f ′(x)
s′(x)

)
with Dom(A ) being comprised of all functions f ∈
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Cb(R) such that f ′(x)/s′(x) is continuous on all of R and differentiable in R \ I.

Specializing to points in I, this specification is equivalent to the conditions in (35).

The range Ran(A ) of A is contained in B(R), and Dom(A )×Ran(A ) is a lin-

ear subset of Cb(R)× B(R). The existence of a diffusion process X that solves

the martingale problem for (A ,Dom(A)) could now be established under very

general conditions (see for example Stroock and Varadhan, 1979). For our pur-

poses however, Theorem 4 below explicitly constructs a diffusion X with speed

and scale measures given by m and s, which therefore provides a solution to the

martingale problem for (A ,Dom(A)) for any x ∈ R (Revuz and Yor, 1999, Theo-

rem 3.12, p 308). Moreover, conditions (4) make the boundaries ±∞ inaccessible

for the process X , and it follows from Mandl (1968, p. 38) that the the transition

probabilities p(t,x, dy) of X make Tt f (x) =
∫
R f (y)p(t,x, dy) a strongly continu-

ous semigroup with the Feller property, namely Tt : Cb(R) → Cb(R) for all t ! 0.

Let (A0,Dom(A0)) be the closure of the infinitesimal generator of {Tt : t ! 0}. By

Ethier and Kurtz (2009, Theorem 4.1, p 182) X is generated by A0 in Cb(R) and

is the unique solution to the martingale problem for A . It follows that A0 = A in

Dom(A0) = { f ∈ Dom(A ) : A f ∈Cb(R)}⊂ Dom(A ). Moreover, from standard

semigroup theory, d
dt Tt f = A f for all f ∈ Dom(A0), namely, p(t,x, dy) is the fun-

damental solution to the backwards equation ∂ v
∂ t =A v. The result now follows from

the uniqueness of fundamental solutions for parabolic differential equations (see for

example Friedman, 2013)

We turn now to the construction of the diffusion X with speed and scale measures

given by m and s in (36). The general procedure rests on the fact that the process

s(X) is on natural scale and can be written as an appropriate re-scaling of a time-

changed Brownian motion (see Mandl (1968) for the general theory, or Ramirez

(2011) for the case of piecewise constant coefficients). Then, we derive the stochas-

tic differential equation that the process X should satisfy and verify that in fact, a

strong solution exists.

We first establish a useful lemma regarding the processes X and s(X).
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Lemma 1. Let X be a diffusion process with scale and speed measures s and m

defined through (27)-(29), that are absolutely continuous with respect to Lebesgue

measure, and have densities s′ and m′ respectively.

1. Denote Y (t) = s(X(t)), t ! 0 where s is the scale function defined in (28). Then

Y is a diffusion with scale function sY (x) = x and speed measure mY with density

satisfying:

m′(x) = s′(x)m′
Y (s(x)) a.e. (37)

2. The quadratic variation of X is given by:

⟨X⟩t =
∫ t

0

2
m′(X(s))s′(X(s))

ds (38)

Proof. That sY (x) = x follow because Y is on natural scale (Revuz and Yor, 1999,

p. 302). Let a < b and recall definition (29) of the speed measure. Denoting

g(a,b,x,y) :=
(x∧ y−a)(b− x∨ y)

b−a
, x,y ∈ (a,b). (39)

we can write

Ex
(
HX

a ∧HX
b
)
=

∫ b

a
g(s(a),s(b),s(x),s(y))m′(y)dy. (40)

Since x→ s(x) is an increasing function, Px(X(t)∈ (a,b))=Ps(x)(Y (t)∈ (s(a),s(b)))

and the expected exit time in (40) can also be written as

Es(x)

(
HY

s(a)∧HY
s(b)

)
=

∫ s(b)

s(a)
g(s(a),s(b),s(x),y)m′

Y (y)dy (41)

=
∫ b

a
g(s(a),s(b),s(x),s(z))s′(y)m′

Y (s(z))dz. (42)

The uniqueness of the measure m (Revuz and Yor, 1999, Theorem 3.6, p. 304) im-

plies (37).

To prove the second assertion, let B be Brownian motion. It follows from

(Breiman, 1992, Theorem 16.51) that a version of Y = s(X) can be written as

a time change of B as follows: let φ(t) :=
∫ t

0
1
2 m′

Y (B(r))dr and T (t) = φ−1(t),

then Y (t) = B(T (t)), t > 0. In particular, ⟨Y ⟩t = T (t). The quadratic variation of

X = s−1(Y ) is therefore



Continuity of Local Time 15

⟨X⟩t =
∫ t

0
[(s−1)′(Y (r))]2 d⟨Y ⟩r =

∫ t

0

1
[s′(X(r))]2

dT (r). (43)

By (37), and performing a change of variables, we can also write T as

T (t) =
∫ T (t)

0
2

1
m′

Y (B(r))
dφ(r) =

∫ t

0
2

s′(X(r))
m′(X(r))

dr. (44)

Combining equations (43) and (44) yields (38).

The following is an extension of results of Ouknine (1991) for the case of piece-

wise constant coefficient and a single interface, and is an equation of the general

type considered by Le Gall (1984) and, more recently, Bass and Chen (2005).

Theorem 4. Under Assumptions 1, the process X constructed in Theorem 3 is the

pathwise unique strong solution to

X(t) =
∫ t

0

√
D(X(s))
η(X(s))

dB(s)−
∫ t

0

D′(X(s))
2η(X(s))

ds+ ∑
j∈Z

2λ j −1
2λ j

LX
+(t,x j) (45)

where LX
+(t,x) is right semimartingale local time of X and the functions D, η are

taken to be left continuous at points in I.

Proof. By Lemma 1 the continuous martingale Y (t) = s(X(t)) has absolutely con-

tinuous quadratic variation ⟨Y ⟩t =
∫ t

0 Z2(r)dr where Z(r) :=
√

2s′(X(r))
m′(X(r)) . It follows

from Karatzas and Shreve (1991, Theorem 3.4.2) that there exists a filtered proba-

bility space with a Brownian motion B, such that Y (t) =
∫ t

0 Z(r)dB(r). Since D is

assumed to be of bounded variation, the function s−1 can be written as the difference

of two convex functions and

(s−1)′′(dx) =− s′′(s−1(x))
[s′(s−1(x))]3

dx+ ∑
j∈Z

[
1

s′(x+j )
− 1

s′(x−j )

]
δs−1(x j)

(dx). (46)

Applying the Ito-Tanaka and occupation times formulas (Revuz and Yor, 1999, The-

orem 1.5 and Exercise 1.23, Chapter VI) on X(t) = s−1(Y (t)) yields

X(t) =
∫ t

0

√
2

s′−(X(r))m′
−(X(r))

dB(r)−
∫ t

0

s′′(X(r))
[s′(X(r))]2m′(X(r))

dr

+ ∑
j∈Z

[
1−

s′(x+j )
s′(x−j )

]
LX
+(t,x j)

(47)
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which coincides with (45). The pathwise uniqueness of strong solutions follows

from Le Gall (1984); Bass and Chen (2005), by noting that under the current as-

sumptions,
√

D/η is a function of bounded variation, bounded away from zero,

and the measure (s−1)′′(dx) in (47) is finite with 2λ j−1
2λ j

< 1
2 for all j ∈ Z.

Having obtained the diffusion X corresponding to the conservation form of (1),

in the next section we explore the role of continuity of flux in the structure of X and

its local time.

3 Various Notions of Local Time

Local time has a striking mathematical role in the development of the modern theory

of stochastic processes, from Brownian motion and diffusion, to continuous semi-

martingale calculus, e.g., see Revuz and Yor (1999); Rogers and Williams (2000);

Ito and MacKean (1974). In the course of this development two particular variations

on the notion of local time have occured as follows:

Definition 1. Let X be a continuous semimartingale with quadratic variation ⟨X⟩t .

The right, left, symmetric semimartingale local time (smlt) of X is a stochastic pro-

cess, respectively denoted LX
+(t,x),LX

−(t,x),LX
∗ (t,x), x ∈ R, t ! 0, continuous in t

and determined by either being right-continuous in x, left continuous in x, or by

averaging LX
∗ (t,x) = (LX

+(t,x)+LX
−(t,x))/2, and such that in any case

∫ t

0
ϕ(X(s))d⟨X⟩s =

∫

R
ϕ(x)LX

±,∗(t,x)dx, (48)

almost surely for any positve Borel measurable function ϕ .

Remark 2. The notation here is slightly different from that of Revuz and Yor (1999).

Observe that by choosing ϕ as an indicator function of an interval [x,x+ε),ε > 0,

one has by right-continuity, for example, that

LX
+(t,x) = lim

ε↓0

1
ε

∫ t

0
1[x,x+ε)(X(s))d⟨X⟩s. (49)
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Similarly, LX
− can be obtained by using the indicator on the interval (x− ε,x].

The next definition is that of diffusion local time (dlt) and requires Feller’s no-

tions of speed measure m(dx) and scale function s(x) (see (27) and (29)). It is cus-

tomary to define dlt only for diffusions on natural scale; e.g., Ito and MacKean

(1974); Rogers and Williams (2000). However, since any diffusion in natural scale

is a time change of Brownian motion, it follows that its local times will therefore

be themselves time changes of the local time of Brownian motion, and therefore

always (spatially) continuous. On the other hand, for a general Feller diffusion X

with scale function s, the transformation Y = s(X) produces a diffusion on natural

scale. This transformation renders local time continuity as a generic property that

does not further inform more specific structure of the diffusion X . We thus extend

the definition to Feller diffusions with any scale.

Definition 2. Let Y be a diffusion with speed measure mY (dy). Then the diffusion

local time (dlt) of Y , denoted L̃Y (y, t) is specified by
∫ t

0
ϕ(Y (r))dr =

∫

I
ϕ(y)L̃Y (y, t)mY (dy), (50)

almost surely for any positive Borel measurable function ϕ .

By Lebesgue’s differentiation theorem, it follows that

L̃X
+(t,x) = lim

ε↓0

1
m[x,x+ ε)

∫ t

0
1[x,x+ε)(X(s))ds (51)

with the corresponding formula for L̃X
−, and L̃X

∗ as the average.

For the case of piecewise constant coefficients at a single interface, a particular

local time continuity property at the interface was identified in Appuhamillage et al.

(2013). It was useful there to consider a modification of the more standard notions of

semimartingale and diffusion local time to one referred to as natural local time. This

was achieved there by exploiting explicit connections with skew Brownian motion

indicated above. An extension to piecewise continuous coefficients and multiple

interfaces is obtained in the present note.
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The following modification of the definition of local time will be seen as useful in

precisely calibrating jump size relative to the interface parameters. Just as in the case

of semimartingale local time, one may consider right, left, and symmetric versions.

Definition 3. Let X be a regular diffusion. The natural local time (nlt) of X , right,

left, and symmetric, respectively, denoted ℓX
±,∗(t,x) is specified by the occupation

time formula ∫ t

0
ϕ(X(s))ds =

∫

I
ϕ(y)ℓX

±,∗(t,x)dx, (52)

for any positive Borel measureable functions ϕ . The right and left versions are de-

fined by the respective right-continuous, left-continuous versions, while the sym-

metric nlt is defined by the arithmetic average of these two.

Remark 3. In its simplest terms, the modification to natural local time is made physi-

cally natural by examination of its units, namely [T
L ], whereas those of smlt are those

of (spatial) length [L], while dlt is dimensionless. However, as previously noted, its

essential feature resides in the implications of continuity properties relative to con-

servation laws. In particular, this puts a notion of stochastic local time on par with

fundamentally important principles of concentration flux and conservation of mass

for pdes.

The relationship between the three notions of local time above is summarized in

the following proposition, the proof of which follows from a direct application of

definitions 1, 2 and 3.

Proposition 1. Let X be a Feller diffusion with speed measure m and quadratic

variation ⟨X⟩t =
∫ t

0 q(X(s))ds, then

ℓX (t,x) =
LX (t,x)

q(x)
= m′(x)L̃X (t,x), a.s. (53)

with right and left versions obtained by considering the right and left continuous

versions of q and m′ respectively.

The celebrated theorem of Trotter et al. (1958) on the (joint) continuity of local

time for Brownian motion is well-known for the depth it provides to the analysis
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of Brownian motion paths. This result is also naturally at the heart of the following

general characterization of continuity of natural local time for regular diffusions.

Theorem 5. Let X be a Feller diffusion on R with absolutely continuous speed mea-

sure m(dx) = m′(x)dx and scale function s(x). Then the ratio ℓX (t,x)/m′(x) is con-

tinuous. Moreover, the natural local time of X is continuous at x if and only if m′ is

continuous at x.

Proof. Let Y (t) = s(X(t)) = B(T (t)) as in the proof of lemma 1. Then LX (t,x) =

LB(T (t),x), t ! 0, x ∈R. On the other hand, (53) together with (38) and (Revuz and

Yor, 1999, Excercise VI.1.23), give

ℓX (t,x) =
m′(x)s′(x)

2
LX (t,x) =

m′(x)
2

LY (t,s(x)) =
m′(x)

2
LB(T (t),s(x)) (54)

and the assertion follows from continuity of LB and the scale function.

It is noteworthy that, in general, the semimartingale local time of X is not made

continuous by division by m′ as in Theorem 5, while, as has been previously noted,

the diffusion local time of the process transformed to natural scale is always contin-

uous. From the point of view of applications the theorem shows that natural local

time furnishes a microscopic probe to detect interfacial parameters η , when β = 1,

or β when η = D, respectively, in (1), through location and size of its discontinu-

ities.

The desired Theorem 2 on the role of the continuity of flux for the process X

defined by (34) now follows as a corollary.

Proof (Proof of Theorem 2 ). Let x j ∈ I. By Theorem 5 and the definitions of m′, ϕ j

in (33), (36) give

ℓX (t,x+j )
ℓX (t,x−j )

=
m′(x+j )
m′(x−j )

=
η(x+j )ϕ j−1

η(x−j )ϕ j
=

η(x+j )D(x−j )λ j

η(x−j )D(x+j )(1−λ j)
(55)
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