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Abstract

Numerical methods are developed for linear parabolic equations in one spa-
tial dimension having piecewise constant di↵usion coe�cients along with a one
parameter family of interface conditions at the discontinuity. We construct
an Euler-Maruyama numerical method for the stochastic di↵erential equation
(SDE) corresponding to the alternative divergence formulation of these equa-
tions. Our main result is the construction of an Euler scheme that can accom-
modate specification of any one of a family of interface conditions considered.
We then prove convergence estimates for the Euler scheme. To illustrate our
method and its theoretical analysis we implement it for the stochastic formula-
tion of the parabolic system.
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1. Introduction

The computational simulation of solutions to linear parabolic partial di↵er-
ential equations (PDEs) requires the use of highly e�cient numerical methods
which are consistent, stable, and potentially have high orders of accuracy.

Di↵usion equations provide one of the standard approaches to modeling pop-
ulation dynamics with dispersal in spatially patchy environments [1, 2]. In dif-
fusion models, the transmission properties at interfaces may be coupled to phys-
ically discrete, discontinuous properties of the environment such as river net-
works [3] or landscape topography and meteorological conditions [4, 5, 6, 7, 8].
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There are a number of empirical studies that indicate that the dispersal be-
havior of individuals, such as species of insects including aphids, beetles and
caterpillar, foraging honey bees as well as several species of butterflies, is influ-
enced by boundaries (interfaces) between di↵erent types of habitats (patches)
[9, 10, 11, 12]. The survey paper ([13]) also highlights examples of dispersion
in the presence of a discontinuous interface, with applications in such disparate
areas as hydrology, ecology, finance, astrophysics and physical oceanography.

In recent work on interfacial e↵ects [14, 15, 16], the authors analyze the un-
derlying stochastic process determined by the di↵usion equation in divergence
form and having a specific interfacial condition in the presence of discontinuities
in di↵usion coe�cients across interfaces. The theory of Brownian motion applies
to di↵usion models in homogeneous media with constant coe�cients [17]. How-
ever, the discontinuity in the di↵usion tensor at the interface between two media
‘skews’ the basic particle motion. Incorporating bias in behavior/movement at
an interface or patch boundary into di↵usion models naturally leads to Skew

Brownian Motion (SBM) [18, 19, 20, 21] at the mathematical foundations, from
which the underlying stochastic particle motions across the discontinuity, called
↵-skew di↵usion, can be constructed [14]. SBM assumes that particles (indi-
viduals) move according to ordinary di↵usion until they encounter an interface,
but at an interface the probability that a particle (individual) will move into
the region on one side of the interface is di↵erent than the chance that it will
move into the region on the opposite side.

In [15, 16, 21] a conservative interface condition requiring continuity of flux
is analyzed. In [14, 22], a one parameter family of interface conditions is consid-
ered, and the e↵ects of this family of interfacial discontinuities in the di↵usion
coe�cient on natural modifications of certain basic functionals of the di↵usion,
such as local time and occupation times, is analyzed. These results extend previ-
ous work in [15, 16] for conservative interface conditions and their e↵ect on first
passage times. The main goal in [14, 22] was to obtain a characterization of pa-
rameters and behavior at the macroscopic scale in terms of underlying stochastic
particle motions. To achieve this goal, an equivalent formulation of the di↵u-
sion problem in terms of solutions to stochastic di↵erential equations (SDEs)
was considered. The e↵ect of the interface was incorporated in an added drift
rate involving the local time [15, 22] of the process (the stochastic counterpart of
the interface condition). In particular it was shown that, at the volumetric scale
of particle concentrations, the continuity of flux at an interface can be viewed as
continuity of natural local time on the stochastic particle scale. As discussed at
length in [22], unlike the case of homogeneous di↵usion, i.e., standard Brownian
motion, physical modeling in this context requires a specific choice of local time

from among the possible variants in the literature, namely: semimartingale lo-
cal time, di↵usion local time, and/or natural local time. While the relationship
between these various notions of local time can readily be derived, the selection
of natural local time is based on the physically desirable condition of continuity
of flux.

The numerical simulation of SDEs is a very active research area that has been
witness to substantial progress [23, 24]. In particular, the numerical simulation
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of SDEs corresponding to divergence form operators involving a discontinuous
coe�cient has been the subject of various articles in the recent past. In the one
dimensional (spatial) context, schemes based on random walks [25, 26, 27, 28],
Euler methods and stochastic Taylor expansions [29, 30], and exact simula-
tion methods [31, 32, 33, 34] have been developed for the approximation of the
solution of SDEs corresponding to conservative interface conditions (and conse-
quently self-adjoint interface conditions). In [35], the authors apply benchmark
tests to four schemes with constant time steps and demonstrate the accurate or
odd behavior of each scheme when computing the steady state and the transient
regime.

In a closely related area, that of numerical methods for SDEs with irregular
coe�cients, there has also been a lot of progress. In [36], the authors analyze
an Euler method in the case of non-regular drift. In [37], an Euler scheme is
designed that converges weakly to the solution if the di↵usion coe�cient is dis-
continuous. However, to prove convergence and obtain the rate of convergence,
Hölder continuity is required. Strong approximation of an Euler-Maruyama
scheme is considered in [38], but a low convergence rate of O(1/ log n) is ob-
tained. In [39], an Euler algorithm for SDEs with discontinuous di↵usion coef-
ficients depending only on time is designed and convergence is proved. Thus,
while a variety of approximations to SDEs with discontinuous di↵usion coe�-
cients exist, the types of convergence, and convergence rates continue to require
refinements of existing computational techniques.

In this paper, we consider the numerical discretization of di↵usion equations
with discontinuous di↵usion coe�cients associated to a one parameter family
of interface conditions. The key idea that we employ is a change of variables
that transforms the given di↵usion problem with the one parameter family of
interface conditions into one that involves a natural continuity of flux interface
condition. This change of variables is a form of symmetrization that renders the
problem into a self-adjoint formulation. The symmetrization will help us to deal
with more general specifications of interface conditions (than the conservative
case), and can be used in either a deterministic or stochastic numerical frame-
work. In this paper, we pursue the stochastic numerical approach. As done in
[14], we consider in this paper an equivalent formulation of the discontinuous
di↵usion problem in terms of solutions to specific SDEs. The main contribution
of this paper is the construction and analysis of an Euler-Maruyama numeri-
cal method to discretize these SDEs [40], following the approach developed by
Martinez and Talay in [30]. Whereas these authors considered parabolic equa-
tions with discontinuous coe�cients, requiring solutions with discontinuous first
derivatives, the interface conditions adopted in their work makes the product
of the di↵usion coe�cient and the first derivative of the solution a continuous
function throughout the domain under consideration. In this paper, motivated
by di↵erent applications, we are naturally lead to consider more general prob-
lems in which the product of the derivative of the solution and the di↵usion
coe�cient remains discontinuous. This generality requires a more careful study
of the error estimates in the Euler-Maruyama method at the interface than the
one required in [30].
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The paper is organized as follows. We first introduce a natural one parameter
family of possible interface conditions coupled to a di↵usion problem, with dis-
continuous di↵usion coe�cient, in one spatial dimension (Section 2). Motivating
areas of application from the engineering, ecological and biological sciences are
briefly noted. We then present a reformulation (symmetrization) of this problem
which naturally can allow the application of deterministic numerical methods.
Next, we introduce the corresponding stochastic di↵erential equation formula-
tion in Section 2.1. In Section 3 we develop an Euler-Maruyama scheme for
numerically discretizing the SDE formulation that is applicable to any one of
the interface conditions under consideration. In Section 4 we prove convergence
of the Euler-Maruyama scheme under mild assumptions following the general
approach of Martinez and Talay [30], adapted to deal with the more general
interface conditions considered in this paper. Finally, numerical simulations are
provided that illustrate our theoretical results and also provide comparison with
other approaches to solve the discontinuous di↵usion problem in Section 5.

2. Di↵usion with Discontinuous Coe�cients

We consider the time dependent di↵usion equation in one dimension with
a piecewise discontinuous di↵usion coe�cient across an interface at x = 0 on
which a one parameter family of interface conditions is prescribed. We define
the time interval J = [0, T ] and the domain ⌦ = R. The corresponding initial
value problem on ⌦⇥ J is given as

@u

@t
(t, x) =

@

@x

✓
D(x)

2

@u(t, x)

@x

◆
, 8x 2 ⌦\{0}, t 2 J \ {0}, (2.1a)

u(t, 0+) = u(t, 0�), 8 t 2 J, (2.1b)

�
@u

@x
(t, 0+) = (1� �)

@u

@x
(t, 0�), 8 t 2 J, (2.1c)

u(0, x) = u0(x), 8 x 2 ⌦. (2.1d)

In model (2.1) the di↵usion coe�cient D is piecewise defined by

D(x) =

(
D+ if x > 0,

D� if x < 0,
(2.2)

for some positive constants D+, D�. We assume initial data u(0, x) = u0(x)
given for all x 2 ⌦ in equation (2.1d). Continuity of the solution u(t, x) at the
interface x = 0 given in (2.1b), as well as a condition at x = 0 given in (2.1c)
that depends on a parameter � with 0 < � < 1, and involves the derivative of
the solution, specify the nature of the interface. The choice of the value of �
varies according to the application, and may be a function of D+ and D�.

Remark 1. One may note that the extreme cases in which � = 0, 1, respec-

tively, correspond to Neumann boundary conditions at the point of interface. In
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particular, therefore the coe�cients are purely constant (smooth) on the corre-

sponding half-line and amenable to standard approaches to Neumann boundary

value problems. From this perspective there is no loss to restricting considera-

tions to 0 < � < 1.

From the point of view of applications to environmental sciences, the cases of

� = �⇤ :=
D+

D+ +D� (continuity of flux), � = �# := 1/2 (continuity of deriva-

tives), and � = 0, arise as solute transport interfaces [14, 41, 22], upwelling of
ocean current modeling [42], and one-sided barrier (reflective) regions, respec-
tively. There are ecological species, example Fender’s blue butterfly, and aphids
for which inter-facial e↵ects are widely reported from experiments, but the pre-
cise interface condition is unknown from a mathematical perspective, e.g., see
[9, 10]. For the latter, the problem of determining � can also be treated as a
statistical problem.

Remark 2. In order to formulate the problem for easy application of numerical

methods, especially deterministic schemes, it is convenient to relate the param-

eter � in the interface condition (2.1c) to one which appears in a reformulation

of problem (2.1) written in self-adjoint form. We do this via multiplication of

both sides of the PDE in (2.1a) by a piecewise defined (positive) function

c(x) =

(
c+ := �/D+

if x > 0,

c� := (1� �)/D�
if x < 0.

(2.3)

The resulting PDE can be written

c(x)
@u

@t
=

@

@x

✓
(x)

@u

@x

◆
, 8x 2 ⌦\{0}, t 2 J \ {0}, (2.4)

where the positive function  is defined as

(x) = c(x)
D(x)

2
=

(
+ := �

2 if x > 0,

� := (1��)
2 if x < 0.

(2.5)

Thus, the interface condition (2.1c) may be interpreted as



@u

@x

�
:= + @u

@x
(t, 0+)� � @u

@x
(t, 0�) = 0, (2.6)

i.e., the jump across the interface of @u

@x
at x = 0, denoted as

⇥
@u

@x

⇤
, is zero.

Thus, problem (2.1) can be reformulated to have an interface condition that

resembles a natural flux condition (conservative) which is more easily amenable

to numerical discretization. The reformulated version of problem (2.1) on ⌦ = R
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can be stated as

c(x)
@u

@t
(t, x) =

@

@x

✓
(x)

@u(t, x)

@x

◆
, 8x 2 ⌦\{0}, t 2 J \ {0}, (2.7a)

[u] := u(t, 0+)� u(t, 0�) = 0, 8 t 2 J, (2.7b)


@u

@x

�
:= + @u

@x
(t, 0+)� � @u

@x
(t, 0�) = 0, 8 t 2 J, (2.7c)

u(0, x) = u0(x), 8x 2 ⌦. (2.7d)

We note that c plays the role of specific heat capacity times mass density of

the material, and  is a thermal conductivity, in the context of heat flow. We

observe that for the special case of � = �⇤ := D+/(D+ + D�) we have that

c(x) ⌘ constant.

2.1. Stochastic Representation of the Solution

In this section, it will be shown that stochastic representations of solution
u(t, x) to (2.1) can be obtained by the analysis of stochastic di↵erential equations
with piecewise constant coe�cients driven by a Brownian motion and the local
time. We can also use probability techniques to derive pointwise estimates for
partial derivatives of this solution.

Let us first record a definition of skew Brownian motion B(↵)(t), 0 < ↵ < 1,
originally introduced by Itô and McKean. Let |B(t)| denote the reflecting Brow-
nian motion starting at 0 defined on a complete probability space (⌦,F ,P), and
enumerate the excursion intervals away from 0 by J1, J2, . . .. Let A1, A2, . . . be
an independent identically distributed sequence of Bernoulli ±1 random vari-
ables, independent of B(t), with P(An = 1) = ↵. Then B(↵)(t) is defined by
changing the signs of the excursion over the intervals Jn whenever to An = �1,
for n = 1, 2, . . .. That is,

B(↵)(t) =
1X

n=1

An1Jn
(t)|B(t)|, t � 0. (2.8)

For x 2 R and t � 0 denote �(x) =
p
D+x1[0,1)(x)+

p
D�x1(�1,0)(x) and

Y (↵)(t) = �
�
B(↵)(t)

�
. (2.9)

For each g 2 C2
b
(R \ {0}) and x 6= 0 we denote the operator

L̃g(x) = D(x)

2
g00(x). (2.10)
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In addition, denote the functional spaces

W2 =
n
g 2 C2

b

�
R \ {0}

�
: g(i) 2 L1(R) \ L2(R), i = 1, 2;

�g0(0+) = (1� �)g0(0�), g00(0+) = g00(0�)
o
, (2.11)

W4 =
n
g 2 C4

b

�
R \ {0}

�
: g(i) 2 L1(R) \ L2(R), i = 1, . . . , 4;

�g0(0+) = (1� �)g0(0�), g00(0+) = g00(0�),

�(L̃g)0(0+) = (1� �)(L̃g)0(0�), (L̃g)00(0+) = (L̃g)00(0�)
o
. (2.12)

Note that any function in W2 or W4 can be written as a di↵erence of two
convex functions. Now we are in a position to state the stochastic representation
theorem which can be found in [41] (see also [30]).

Theorem 3 (Corollary 2.2 from [41]). Let 0 < � < 1, u0 2 W2
, and

↵ = ↵(�) =
�
p
D�

�
p
D� + (1� �)

p
D+

. (2.13)

Then the function

u(t, x) = Exu0(Y
(↵)(t)), (t, x) 2 [0, T ]⇥ R (2.14)

is the unique function in C1,2
b

([0, T ]⇥ (R \ {0})) \ C([0, T ]⇥ R) which satisfies

the equations (2.1).

It follows from the proof of [41, Theorem 2.1] that if f 2 C2(R\{0})\C(R)
satisfying the conditions �f 0(0+) = (1 � �)f 0(0�) and f 00(0+) = f 00(0�) then,
for ↵ = ↵(�) as in (2.13), we have

f
�
Y (↵)(t)

�
= f

�
Y (↵)(0)

�
+

Z
t

0
f 0
�
�
Y (↵)(s)

�q
D
�
Y (↵)(s)

�
dB(s)

+
1

2

Z
t

0
D
�
Y (↵)(s)

�
f 00�Y (↵)(s)

�
ds, (2.15)

where f 0
�(x) denotes one sided left derivative and f 00(x) is the usual second

derivative for x 6= 0. In fact, (2.15) is the first equation on page 389 in [41] with
the term relating to the local time equaling 0. In addition, Y (↵)(t) satisfies the
following stochastic di↵erential equation with a local time

dY (↵)(t) =
q
D
�
Y (↵)(t)

�
dB(t) +

 p
D+ �

p
D�

2
+
p
D� 2↵� 1

2↵

!
dlB

(↵)
,+

t
(0)

(2.16)

where D(x) is defined as in (2.2), the local time lB
(↵)

,+
t

(0) is defined by

lB
(↵)

,+
t

(0) = lim
✏#0

1

✏

Z
t

0
1[0,✏)(B

(↵)(s))dhB(↵)is,
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and hB(↵)is denotes the quadratic variation of B(↵)(s).
Next, we have some pointwise estimates for the derivatives of u(t, x). A

similar result for the case of � = D
+

D++D� (continuity of flux) was given in [30].

Theorem 4. Let 0 < � < 1, ↵ = ↵(�) as in (2.13), and Y (↵)(t) the solution of

the SDE (2.16).
Part I: The probability distribution of Y (↵)(t) under Px

(i.e. Y (↵)(0) =
x) has a density q(↵)(t, x, y) continuous for t > 0, x 2 R, and y 2 R \ {0}.
Furthermore, there exists a constant C > 0 such that for all x 2 R, t > 0, and
y 2 R \ {0},

q(↵)(t, x, y)  Cp
t
, (2.17)

and such that for all x 2 R, t > 0, and u0 2 L1(R),
���Exu0

�
Y (↵)(t)

���� 
Cp
t
ku0k1. (2.18)

Part II: For all j = 0, 1, 2 and i = 1, 2, 3, 4 satisfying 2j + i  4 there exists

a constant C > 0 such that for all x 2 R, t > 0, and u0 2 W4
,

���
@j

@tj
@i

@xi
u(t, x)

��� 
Cp
t

��u0
0

��
�,1

, (2.19)

where � = 1 if 2j+i = 1 or 2; � = 2 if 2j+i = 3 or 4, and kgk�,1 =
P

�

i=1

�� @
i
g

@xi

��
1
.

The proof of the theorem will be presented in Section 4 to keep the presen-
tation more transparent.

3. Numerical Methods for Stochastic Di↵usion in the Presence of an

Interface

In this section we will consider a numerical solution to system (2.1) using
a Monte-Carlo method. The discontinuities in the coe�cient of the equation,
as well as the generality of the interface condition considered in this paper
present challenges in two di↵erent aspects of the theory. On the one hand,
the discontinuity in the di↵usion coe�cient naturally requires to consider SDEs
that include a local time term (see Section 2.1 for details). As noted in [30],
a transformation of the stochastic process can be defined so that this local
time term is eliminated. On the other hand, the generality of the interface
condition here renders inadequate the approach of [30] since they benefited from
the self adjoint property of the problem under their consideration. Instead, in
the problem treated in this paper, a careful quantification of the e↵ect of the
interface condition is needed.

In what follows we will use the approach developed in [30] to eliminate the
local time term in the SDE associated to solutions of (2.1), and introduce an
Euler-Maruyama method to approximate solutions of the resulting SDE. We
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will construct an explicit one-to-one transformation which transforms Y (↵) to
a solution to a stochastic di↵erential equation without a local time which can
easily be discretized by a standard Euler-Maruyama scheme. Since the trans-
formation is one-to-one and explicit, we can take the inverse transformation of
this numerical solution to obtain a numerical approximation for Y (↵). As a
consequence of Theorem 3, we can approximate u(t, x) by Exu0(Y (↵)(t)) and
compute the latter using a Monte-Carlo simulation. The main theorems estab-
lishing the rate of convergence of the approximation are stated in this section,
with proofs given in Section 4.

3.1. A Transformation

We denote
�(x) = �x1(�1,0](x) + (1� �)x1(0,1)(x). (3.1)

Then �(·) is a one-to-one mapping with the inverse ��1(x) = x

�
1(�1,0](x) +

x

1��
1(0,1)(x). It is easy to see that �0

�(x) = �1(�1,0](x)+(1��)1(0,1)(x) and

��0
�(0

+) = (1� �)�0
�(0

�). Thus, � 2 C2(R \ {0}) \ C(R).
Denote ✓(x) = �0

�(x)
p

D(x). It follows that

✓(x) := �0
�(x)

p
D(x) = �

p
D�1(�1,0](x) + (1� �)

p
D+1(0,1)(x). (3.2)

Since � 2 C2(R \ {0}) \ C(R) and ✓ � � = �0, by using (2.15) and Itô-Tanaka
formula we get

�
�
Y (↵)(t)

�
= �

�
Y (↵)(0)

�
+

Z
t

0
�0
�
�
Y (↵)(s)

�q
D
�
Y (↵)(s)

�
dB(s)

= �
�
Y (↵)(0)

�
+

Z
t

0
✓
�
�
�
Y (↵)(s)

��
dB(s). (3.3)

Denote X(t) = �
�
Y (↵)(t)

�
, then (3.3) yields that X(t) is a solution to a stochas-

tic di↵erential equation with piecewise constant di↵usion coe�cient

X(t) = X(0) +

Z
t

0
✓(X(s))dB(s). (3.4)

Note that the existence and uniqueness of (3.4) is proved in Theorem 1.3 (in
which Assumption B holds) and the Remark thereafter in [43]. This equation
will be useful to approximate the stochastic process Y (↵)(t) and therefore u(t, x)
by virtue of its stochastic representation (2.14).

3.2. Euler-Maruyama Scheme

Let M be a positive integer and � = �t = T

M
the step size. For 0  k  M ,

put tk = k�t. The Euler-Maruyama approximation X̄�(t) of X(t) is defined
as follows

X̄�(t) = X̄�(tk) + ✓
�
X̄�(tk)

��
B(t)�B(tk)

�
, tk < t  tk+1, (3.5)

X̄�(0) = �
�
Y (↵)(0)

�
.
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Algorithm A step of the Euler-Maruyama scheme

Data: The position X̄�(tk) at time tk of the process.
Result: The position X̄�(tk+1) at time tk+1 of the process.
if X̄�(tk)  0 then

return X̄�(tk) + �
p
D�⇠ with ⇠ ⇠ N(0,�t);

else

return X̄�(tk) + (1� �)
p
D+⇠ with ⇠ ⇠ N(0,�t);

end

Next, we can approximate Y (↵)(t) by inversely transforming X̄�(t)

Ȳ �(t) = ��1
�
X̄�(t)

�
, 0  t  T. (3.6)

The numerical solution to (2.1) can be now obtained. Define

u�(T, x) = Exu0(Ȳ
�(T )). (3.7)

3.3. Convergence Rate

The convergence rate of the above numerical method is given in the following
theorem.

Theorem 5. For all initial condition u0 2 W4
, all parameter 0 < ✏ < 1/2

there exists a constant C depending on ✏ such that for all n large enough, and

all x0 2 R,
���Ex0u0(Y

(↵)(T ))�Ex0u0(Ȳ
�(T ))

���  Cku0
0k1,1�t(1�✏)/2+Cku0

0k1,1
p
�t+Cku0

0k3,1�t1�✏.

(3.8)

Next, we can relax the transmission conditions of u0 and L̃u0 in the above
theorem which are required in the definition of W4.

Theorem 6. Let u0 : R ! R be in the space

W =
n
g 2 C4

b

�
R\{0}

�
, g(i) 2 L1(R) \ L2(R) for i = 1, . . . , 4

o
.

Then for any parameter 0 < ✏ < 1/2 there exists a constant C depending on u0

and ✏ such that for all n large enough, and all x0 2 R,
���u�(T, x0)� u(T, x0)

���  C�t1/2�✏. (3.9)

The proof of these results will be given in the next section.

4. Proofs of Main Results

In this section we collectively present the proofs of Theorem 4, Theorem 5
and Theorem 6. To this end, the explicit formulae available for the transition
probability density of skew Brownian motion and careful analysis of the error
estimates are done. The convergence rate of Euler-Maruyama is proved using
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the approach by Martinez and Talay in [30]. As mentioned above, the interface
conditions adopted in [30] makes the product of the di↵usion coe�cient and
the first derivative of the solution a continuous function throughout the domain
under consideration. In the present problem, we consider more general problems
in which the product of the derivate of the solution and the di↵usion coe�cient
remains discontinuous. This generality requires a more careful study of the error
estimates in the Euler Muruyama method at the interface than the one required
in [30].

4.1. Proof of Theorem 4

The proof will follow from a sequence of steps involving lemmas.
Proof of Part I.

Let p(↵)(t, x, y) be the density function of the skew Brownian motion B(↵), then
according to [19],

p(↵)(t, x, y) =

8
>>>>>><

>>>>>>:

1p
2⇡t

e
�(y�x)2

2t + (2↵�1)p
2⇡t

e
�(x+y)2

2t , if x > 0, y > 0,

1p
2⇡t

e
�(y�x)2

2t � (2↵�1)p
2⇡t

e
�(x+y)2

2t , if x < 0, y < 0,

2↵p
2⇡t

e
�(y�x)2

2t , if x  0, y > 0,
2(1�↵)p

2⇡t
e

�(y�x)2

2t , if x � 0, y < 0.

(4.1)

Thus, it follows from (2.9) that Y (↵)(t) under Px has a density denoted by
q(↵)(t, x, y) which satisfies

q(↵)(t, x, y) =
1p
D(y)

p(↵)
 
t,

xp
D(x)

,
yp
D(y)

!
. (4.2)

It is clear that (4.1) and (4.2) imply (2.17) and then (2.18).
Proof of Part II. The proof is broken into a few lemma, estimating respec-

tively time derivatives and space derivatives respectively. We begin by estimat-
ing the first partial derivative with respect to time.

Lemma 7. There exists a positive constant C such that for all t 2 (0, T ],

sup
x 6=0

����
@u

@t
(t, x)

���� 
Cp
t

��u0
0

��
1,1

. (4.3)

Proof. Recall that (2.15) holds true for any u0 2 C2
b

�
R\{0}

�
\C(R) satisfying

�u0
0(0

+) = (1� �)u0
0(0

�) and u00
0(0

+) = u00
0(0

�). Hence, for all x 2 R and t > 0,

Exu0

�
Y (↵)(t)

�
= u0(x) +

Z
t

0
ExL̃u0

�
Y (↵)(s)

�
ds, (4.4)

where the operator L̃ is defined as in (2.10). In addition, notice that

dY (↵)(t) =
q�

Y (↵)(t)
�
dB(t) +

 p
D+ �

p
D�

2
+
p
D� 2↵� 1

2↵

!
dlB

(↵)
,+

t
(0).

(4.5)
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Fix x > 0. Denote ⌧0(Y (↵)) = inf{s > 0 : Y (↵)(s) = 0} and rx0 (s) the density
of ⌧0(Y (↵))^ T under Px. Notice that ⌧0(Y (↵)) = ⌧0

�
x+

p
D+B

�
where B(·) is

the standard Brownian motion. For any function h such that Exh(Y (↵)) < 1
we have

Exh(Y (↵)(t))

= Ex

h
h(Y (↵)(t))1{⌧0�t}

i
+ Ex

h
h(Y (↵)(t))1{⌧0<t}

i

= Ex

h
h
�
x+

p
D+B(t)

�
1{⌧0�t}

i
+

Z
t

0
E0h

�
Y (↵)(t� s)

�
rx0 (s)ds

= Exh
�
x+

p
D+B(t)

�
� Ex

h
h
�
x+

p
D+B(t)

�
1{⌧0<t}

i
+

Z
t

0
E0h

�
Y (↵)(t� s)

�
rx0 (s)ds

= Exh
�
x+

p
D+B(t)

�
�
Z

t

0
E0h

�p
D+B(s)

�
rx0 (t� s)ds+

Z
t

0
E0h

�
Y (↵)(s)

�
rx0 (t� s)ds.

(4.6)

For x < 0 we have a similar identity. To proceed, we assume that x > 0. From
(4.6) we can write

u(t, x) = Exu0(Y
(↵)(t)) = Exu0

�
x+

p
D+B(t)

�
+ v(t, x), (4.7)

where

v(t, x) = �
Z

t

0
E0u0

�p
D+B(s)

�
rx0 (t� s)ds+

Z
t

0
E0u0

�
Y (↵)(s)

�
rx0 (t� s)ds

=

Z
t

0

Z
s

0

h
E0L̃u0

�
Y (↵)(⇠)

�
� E0L̃+u0

�p
D+B(⇠)

�i
d⇠ rx0 (t� s)ds (4.8)

and L̃+u0 = D
+

2 u00
0 . Since

@v

@t
(t, x) =

Z
t

0

h
E0L̃u0

�
Y (↵)(s)

�
� E0L̃+u0

�p
D+B(s)

�i
rx0 (t� s)ds, (4.9)

according to Part I of Theorem 2.4 and Lemma 10 we obtain,
����
@v

@t
(t, x)

���� 
Z

t

0

h���E0L̃u0

�
Y (↵)(s)

����+
���E0L̃+u0

�p
D+B(s)

����
i
rx0 (t� s)ds

 C
⇣��L̃u0

��
1
+
��L̃+u0

��
1

⌘Z t

0

1p
s
rx0 (t� s)ds

 Cp
t

⇣��L̃u0

��
1
+
��L̃+u0

��
1

⌘
. (4.10)

Next we estimate @

@t
Exu0(x+

p
D+B(t)). It is obvious that the density q+(t, x, y)

of x +
p
D+B(t) satisfies the inequality q+(t, x, y)  Cp

t
exp{� (y�x)2

⌫t
} for all

0  t  T for some constants C, ⌫. It follows from the equation

@

@t
Exu0

�
x+

p
D+B(t)

�
= ExL̃+

⇣
u0

�
x+

p
D+B(t)

�⌘
=

D+

2

Z
u00
0(y)q

+(t, x, y)dy

12



that

sup
x2R

����
@

@t
Exu0(x+

p
D+B(t))

���� 
Cp
t

���L̃+u0

���
1
. (4.11)

Combining (4.7), (4.10), and (4.11) we derive (4.3) as desired. ⇤
For the second time derivative we have the following.

Lemma 8. There exists a positive constant C such that for all t 2 (0, T ],

sup
x 6=0

����
@2u

@t2
(t, x)

���� 
Cp
t

��u0
0

��
3,1

. (4.12)

Proof. For u0 2 W4, L̃u0 2 W2. By virtue of (4.7) and (4.9) we have

@2u

@t2
(t, x) =

@2

@t2
Exu0

�
x+

p
D+B(t)

�

+

Z
t

0

@

@t

h
E0L̃u0

�
Y (↵)(t� s)

�
� E0L̃+u0

�p
D+B(t� s)

�i
rx0 (s)ds

=
@

@t
ExL̃+u0

�
x+

p
D+B(t)

�

+

Z
t

0

h
E0L̃(L̃u0)

�
Y (↵)(s)

�
� E0L̃+(L̃+u0)

�p
D+B(s)

�i
rx0 (t� s)ds.

Therefore, by Lemma 7, we obtain

����
@2u

@t2
(t, x)

���� 
Cp
t

���L̃+(L̃+u0)
���
1
+

Cp
t

⇣
kL̃(L̃u0)k1 + kL̃+(L̃+u0)k1

⌘
=

Cp
t
ku0

0k3,1.

For spatial derivatives, we first establish the following estimate.

Lemma 9. There exists a positive constant C such that for all t 2 (0, T ],

sup
x 6=0

����
@u

@x
(t, x)

���� 
Cp
t
ku0

0k1,1. (4.13)

Proof. Since @

@x
Exu0(x+

p
D+B(t)) = Exu0

0(x+
p
D+B(t)), we have

����
@

@x
Exu0(x+

p
D+B(t))

����
1

=
���Exu0

0(x+
p
D+B(t))

���
1

=

����
Z

u0
0(y)q

+(t, x, y)dy

����
1

 Cp
t

����
Z

u0
0(y)e

� (y�x)2

D+t2 dy

����
1

 Cp
t
ku0

0k1.

(4.14)
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Let

H(s) =

Z
s

0

h
E0L̃u0(Y

(↵)(⇠))� E0L̃+u0(x+
p
D+B(⇠))

i
d⇠,

then since H(0) = 0 and H 0(s)  C
�
kL̃u0k1+kL̃+u0k1

�
= CH

s0
we have by (4.8)

and Lemma 11 that

v(t, x) =

Z
t

0
H(s)rx0 (t� s)ds

and ���
@v

@x
(t, x)

���  C̃
�
kL̃+u0k1 + kL̃u0k1

�
. (4.15)

In view of (4.7), (4.14) and (4.15) we obtain (4.13). ⇤
By the similar way we can prove the estimates for

��� @
j

@tj
@
i

@xiu(t, x)
��� for 2j+i 

4. ⇤

4.2. Proof of Theorem 5

Denote sk = T � tk for 0  k  M . Since u(0, x) = u0(x) and u(T, x) =
Exu0(Y (↵)(T )),

u(0,��1(X̄�(T )) = u0(�
�1(X̄�(T ))),

u(T, x0) = u(T, X̄�(0)) = u(T,��1(Y (↵)(0)) = Ex0u0(Y
(↵)(T )).

Therefore,

✏x0
T

=
���Ex0u0

�
Y (↵)(T )

�
� Ex0u0

�
Ȳ �(T )

���� =
���Ex0u0

�
��1(X̄(T ))

�
� Ex0u0

�
��1(X̄�(T ))

����

=
���Ex0u

�
T,��1(X̄�(0))

�
� Ex0u

�
0,��1(X̄�(T ))

����

=
���
M�1X

k=0

h
Ex0u

�
T � tk,�

�1(X̄�(tk))
�
� Ex0u

�
T � tk+1,�

�1(X̄�(tk+1))
�i���


���
M�2X

k=0

h
Ex0u

�
sk,�

�1(X̄�(tk))
�
� Ex0u

�
sk+1,�

�1(X̄�(tk+1))
�i���

+
���Ex0u

�
sM�1,�

�1(X̄�(tM�1))
�
� Ex0u

�
0,��1(X̄�(T ))

����. (4.16)

To estimate the second term in (4.16), we use the fact that u(0, x) = u0(x) and
obtain

���Ex0u
�
sM�1,�

�1(X̄�(tM�1))
�
� Ex0u

�
0,��1(X̄�(T ))

����


���Ex0u

�
sM�1,�

�1(X̄�(tM�1))
�
� Ex0u

�
0,��1(X̄�(tM�1))

����

+
���Ex0u0

�
��1(X̄�(tM�1))

�
� Ex0u0

�
��1(X̄�(T ))

����.
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Since u00
0 is in L1(R), u0

0 is bounded and u0 � ��1 is Lipschitz. By virtue of the
inequality sup

x 6=0 |@u@t (t, x)| 
Cp
t
ku0

0k1,1 we have

���Ex0u
�
sM�1,�

�1(X̄�(tM�1))
�
� Ex0u

�
0,��1(X̄�(T ))

����  Cku0
0k1,1

p
�t.

(4.17)
It remains to estimate the first term in (4.16). To proceed, we denote the

time and space increments as follows

Tk = u
�
sk,�

�1(X̄�(tk))
�
� u
�
sk+1,�

�1(X̄�(tk))
�
,

Sk = u
�
sk+1,�

�1(X̄�(tk+1))
�
� u
�
sk+1,�

�1(X̄�(tk))
�
.

The first term in (4.16) then can be rewritten as
��PM�2

k=0 Ex0(Tk � Sk)
��. The

analysis of this term will be divided into 4 steps.
Step 1: Estimate for the time increment Tk: Since sk � sk+1 = �t, by the

definition of Tk and applying a Taylor expansion we have

h
u
�
sk,�

�1(X̄�(tk))
�
� u
�
sk+1,�

�1(X̄�(tk))
�i
1{X̄�(tk)>0}

= �t
@u

@t

�
sk+1,�

�1(X̄�(tk))
�
1{X̄�(tk)>0}

+�t2
Z

[0,1]2

@2u

@t2
�
sk+1 + ⌧1⌧2�t,��1(X̄�(tk))

�
⌧1d⌧1d⌧21{X̄�(tk)>0}

= T+
k

+R+
k
.

Similarly,

h
u
�
sk,�

�1(X̄�(tk))
�
� u
�
sk+1,�

�1(X̄�(tk))
�i
1{X̄�(tk)<0}

= �t
@u

@t

�
sk+1,�

�1(X̄�(tk))
�
1{X̄�(tk)<0}

+�t2
Z

[0,1]2

@2u

@t2
�
sk+1 + ⌧1⌧2�t,��1(X̄�(tk))

�
⌧1d⌧1d⌧21{X̄�(tk)<0}

= T�
k

+R�
k
.

It follows from the above equations and the inequality sup
x 6=0 |@

2
u

@t2
(t, x)| 

Cp
t
ku0

0k3,1 that

Ex0
��R+

k
+R�

k

�� = Ex0�t2
���
Z

[0,1]2

@2u

@t2
�
sk+1+⌧1⌧2�t,��1(X̄�(tk))

�
⌧1d⌧1d⌧2

��� 
C�t2
p
sk+1

ku0
0k3,1.

Therefore, we obtain

Ex0Tk = �tEx0

h@u
@t

�
sk+1,�

�1(X̄�(tk))
�i

+O

✓
�t2

p
sk+1

◆
. (4.18)

15



Step 2: Estimate for the space increment Sk: Let us denote the following
increments, with ✓ as defined in (3.2)

4k+1B = B(tk+1)�B(tk),

4k+1X̄
� = ✓

�
X̄�(tk)

�
4k+1B,

4̃k+1Ȳ
� =

4k+1X̄�

1� �
1{X̄�(tk)>0} +

4k+1X̄�

�
1{X̄�(tk)<0}, (4.19)

and events

⌦++
k

=
n
X̄�(tk) > 0, X̄�(tk+1) > 0

o
, ⌦+�

k
=
n
X̄�(tk) > 0, X̄�(tk+1)  0

o
,

⌦��
k

=
n
X̄�(tk)  0, X̄�(tk+1)  0

o
, ⌦�+

k
=
n
X̄�(tk)  0, X̄�(tk+1) > 0

o
.

Hence, by the definition of the function �, on ⌦++
k

,

��1
�
X̄�(tk+1)

�
= ��1

�
X̄�(tk)

�
+

4k+1X̄�

1� �
.

This and a Taylor expansion yield

Sk1⌦++
k

=
4k+1X̄�

1� �

@u

@x

⇣
sk+1,�

�1(X̄�(tk))
⌘
1⌦++

k

+
1

2

(4k+1X̄�)2

(1� �)2
@2u

@x2

⇣
sk+1,�

�1(X̄�(tk))
⌘
1⌦++

k

+
1

6

(4k+1X̄�)3

(1� �)3
@3u

@x3

⇣
sk+1,�

�1(X̄�(tk))
⌘
1⌦++

k

+
(4k+1X̄�)4

(1� �)4

Z

[0,1]4

@4u

@x4

⇣
sk+1,�

�1(X̄�(tk)) + ⌧1⌧2⌧3⌧4
4k+1X̄�

1� �

⌘
⌧1⌧2⌧3d⌧1 . . . d⌧41⌦++

k

=: S++1
k

+ S++2
k

+ S++3
k

+ S++4
k

.

Similarly,

Sk1⌦��
k

=
4k+1X̄�

�

@u

@x

⇣
sk+1,�

�1(X̄�(tk))
⌘
1⌦��

k

+
1

2

(4k+1X̄�)2

�2

@2u

@x2

⇣
sk+1,�

�1(X̄�(tk))
⌘
1⌦��

k

+
1

6

(4k+1X̄�)3

�3

@3u

@x3

⇣
sk+1,�

�1(X̄�(tk))
⌘
1⌦��

k

+
(4k+1X̄�)4

�4

Z

[0,1]4

@4u

@x4

⇣
sk+1,�

�1(X̄�(tk)) + ⌧1⌧2⌧3⌧4
4k+1X̄�

�

⌘
⌧1⌧2⌧3d⌧1 . . . d⌧41⌦��

k

=: S��1
k

+ S��2
k

+ S��3
k

+ S��4
k

.

Since ⌦++
k

[⌦��
k

= ⌦�
�
⌦+�

k
[⌦�+

k

�
and ⌦+�

k
[⌦�+

k
2 �{B(t) : 0  t  tk+1},
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by (4.19) we get

Ex0

⇣
S++1
k

+ S��1
k

⌘

= Ex0


4k+1X̄�

1� �

@u

@x

⇣
sk+1,�

�1(X̄�(tk))
⌘
1⌦++

k

+
4k+1X̄�

�

@u

@x

⇣
sk+1,�

�1(X̄�(tk))
⌘
1⌦��

k

�

+ Ex0


4̃k+1Ȳ

� @u

@x

⇣
sk+1,�

�1(X̄�(tk))
⌘
1{⌦+�

k
[⌦�+

k
}

�

� Ex0


4̃k+1Ȳ

� @u

@x

⇣
sk+1,�

�1(X̄�(tk))
⌘
1{⌦+�

k
[⌦�+

k
}

�

= Ex0

⇣4k+1X̄�

1� �
1{X̄�(tk)>0} +

4k+1X̄�

�
1{X̄�(tk)<0}

⌘@u
@x

⇣
sk+1,�

�1(X̄�(tk))
⌘�

� Ex0


4̃k+1Ȳ

� @u

@x

⇣
sk+1,�

�1(X̄�(tk))
⌘
1{⌦+�

k
[⌦�+

k
}

�

= �Ex0


4̃k+1Ȳ

� @u

@x

⇣
sk+1,�

�1(X̄�(tk))
⌘
1{⌦+�

k
[⌦�+

k
}

�
. (4.20)

In the last step we have used that

4k+1X̄�

1� �
1{X̄�(tk)>0}+

4k+1X̄�

�
1{X̄�(tk)<0} =

hp
D+1{X̄�(tk)>0} +

p
D�1{X̄�(tk)<0}

i
�k+1B

so by conditioning, we get that its expectation vanishes.
In a similar manner, and using that E

⇥
(4k+1B)2

��B(t), 0  t  tk
⇤
= �t,

we obtain

Ex0

⇣
S++2
k

+ S��2
k

⌘

=
1

2
Ex0

⇢⇣4k+1X̄�

1� �

⌘2
1⌦++

k

+
⇣4k+1X̄�

�

⌘2
1⌦��

k

�
@2u

@x2

�
sk+1,�

�1(X̄�(tk))
��

=
1

2
Ex0

(⇣✓(X̄�(tk))4k+1B

1� �

⌘2
1{X̄�(tk)>0} +

⇣✓(X̄�(tk))4k+1B

�

⌘2
1{X̄�(tk)<0}

�

⇥ @2u

@x2

⇣
sk+1,�

�1(X̄�(tk))
⌘)

� 1

2
Ex0

�
4̃k+1Ȳ

�
�2 @2u

@x2

⇣
sk+1,�

�1(X̄�(tk))
⌘
1{⌦+�

k
[⌦�+

k
}

�

=
�t

2
Ex0

⇢⇥
D+1{X̄�(tk)>0} +D�1{X̄�(tk)<0}

⇤ @2u

@x2

⇣
sk+1,�

�1(X̄�(tk))
⌘�

� 1

2
Ex0

�
4̃k+1Ȳ

�
�2 @2u

@x2

⇣
sk+1,�

�1(X̄�(tk))
⌘
1{⌦+�

k
[⌦�+

k
}

�

=
�t

2
Ex0


D
�
��1(X̄�(tk))

�@2u

@x2

⇣
sk+1,�

�1(X̄�(tk))
⌘�

� 1

2
Ex0

�
4̃k+1Ȳ

�
�2 @2u

@x2

⇣
sk+1,�

�1(X̄�(tk))
⌘
1{⌦+�

k
[⌦�+

k
}

�
.
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Thus,

Ex0

⇣
S++2
k

+ S��2
k

⌘
= Ex0L̃u

⇣
sk+1,�

�1(X̄�(tk))
⌘
�t

� 1

2
Ex0

�
4̃k+1Ȳ

�
�2 @2u

@x2

⇣
sk+1,�

�1(X̄�(tk))
⌘
1{⌦+�

k
[⌦�+

k
}

�
.

(4.21)

Since E
⇥
(4k+1B)3

��B(t), 0  t  tk
⇤
= 0,

Ex0

⇣
S++3
k

+ S��3
k

⌘
= �1

6
Ex0

�
4̃k+1Ȳ

�
�3 @3u

@x3

⇣
sk+1,�

�1(X̄�(tk))
⌘
1{⌦+�

k
[⌦�+

k
}

�
.

(4.22)

Next, according to Theorem 4,

Ex0

���S++4
k

+ S��4
k

��� 
C�t2
p
sk+1

��u0
0

��
3,1

. (4.23)

Combining the estimates (4.20) through (4.23) above, we arrive at

Ex0Sk = Ex0L̃u
⇣
sk+1,�

�1(X̄�(tk))
⌘
�t

+ Ex0

(
Sk � 4̃k+1Ȳ

� @u

@x

⇣
sk+1,�

�1(X̄�(tk))
⌘�

1{⌦+�
k

[⌦�+
k

}

� 1

2

�
4̃k+1Ȳ

�
�2 @2u

@x2

⇣
sk+1,�

�1(X̄�(tk))
⌘
1{⌦+�

k
[⌦�+

k
}

� 1

6

�
4̃k+1Ȳ

�
�3 @3u

@x3

⇣
sk+1,�

�1(X̄�(tk))
⌘
1{⌦+�

k
[⌦�+

k
}

)
+O

✓
�t2

p
sk+1

◆

=: Ex0L̃u
⇣
sk+1,�

�1(X̄�(tk))
⌘
�t+ Ex0Rk +O

✓
�t2

p
sk+1

◆
. (4.24)

We now estimate the remaining term Ex0Rk.
Step 3: Estimate Ex0Rk:
For any fixed ✏ 2 (0, 1/2), we will show that

���Ex0Rk

��� 
C�t1�2✏

p
sk+1

��u0
0

��
1,1

Px0

n��X̄�(tk)
��  �t

1
2�✏

o

+
C�t

3
2�3✏

p
sk+1

��u0
0

��
3,1

Px0

n��X̄�(tk)
��  �t

1
2�✏

o
. (4.25)

Notice that we can rewrite ⌦+�
k

as

⌦+�
k

=
n
X̄�(tk) � �t

1
2�✏, X̄�(tk+1)  0

o
[
n
0 < X̄�(tk)  �t

1
2�✏, X̄�(tk+1)  ��t

1
2�✏

o

[
n
0 < X̄�(tk)  �t

1
2�✏, ��t

1
2�✏  X̄�(tk+1)  0

o
.
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Since X̄�(tk+1) = X̄�(tk) + ✓
�
X̄�(tk)

�
B(�t), it follows that

P
n
X̄�(tk) � �t

1
2�✏, X̄�(tk+1)  0

o
 P

n
(1��)

p
D+B(�t) � �t

1
2�✏

o
 C exp{�CM ✏}.

Similarly,

P
n
0 < X̄�(tk)  �t

1
2�✏, X̄�(tk+1)  ��t

1
2�✏

o
 C exp{�CM ✏}.

We can proceed analogously on the event ⌦�+
k

. This leads us to limit to consider
the events

⌦̂+�
k

=
n
0 < X̄�(tk)  �t

1
2�✏, ��t

1
2�✏  X̄�(tk+1)  0

o
,

⌦̂�+
k

=
n
��t

1
2�✏  X̄�(tk) < 0, 0  X̄�(tk+1)  �t

1
2�✏

o
.

Note that, by (4.19), 4̃k+1Ȳ �  C�t1/2�✏ on these sets. Hence, we have

����E
x0

�
4̃k+1Ȳ

�
�2 @2u

@x2

⇣
sk+1,�

�1(X̄�(tk))
⌘
1{⌦̂+�

k
[⌦̂�+

k
}

�����

 C�t1�2✏

p
sk+1

ku0
0k1,1Px0

n��X̄�(tk)
��  �t

1
2�✏

o
,

����E
x0

�
4̃k+1Ȳ

�
�3 @3u

@x3

⇣
sk+1,�

�1(X̄�(tk))
⌘
1{⌦̂+�

k
[⌦̂�+

k
}

�����

 C�t
3
2�3✏

p
sk+1

ku0
0k3,1Px0

n��X̄�(tk)
��  �t

1
2�✏

o
.

Therefore, it su�ces to show that
����E

x0


Sk � 4̃k+1Ȳ

� @u

@x

�
sk+1,�

�1(X̄�(tk))
��

1{⌦̂+�
k

[⌦̂�+
k

}

����

 C�t1�2✏

p
sk+1

ku0
0k1,1Px0

n��X̄�(tk)
��  �t

1
2�✏

o
. (4.26)

Step 4: Proof of (4.26)

Note that on the set ⌦̂+�
k

, X̄�(tk) and X̄�(tk+1) are both closed to 0. In
addition, X̄�(tk) > 0 and X̄�(tk+1) < 0. Thus, we have

��1
�
X̄�(tk)

�
=

X̄�(tk)

1� �
, ��1

�
X̄�(tk+1)

�
=

X̄�(tk+1)

�
.
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Since u(t, x) is continuous at 0, we get

Ex0


Sk � 4̃k+1Ȳ

� @u

@x

⇣
sk+1,�

�1
�
X̄�(tk)

�⌘�
1⌦̂+�

k

=
1

�
Ex0


X̄�(tk+1)

@u

@x

⇣
sk+1, 0

�
⌘
1⌦̂+�

k

�
� 1

1� �
Ex0


X̄�(tk)

@u

@x

⇣
sk+1, 0

+
⌘
1⌦̂+�

k

�

� Ex0


4̃k+1Ȳ

� @u

@x

⇣
sk+1, 0

+
⌘
1⌦̂+�

k

�

+ Ex0

("⇣
��1

�
X̄�(tk+1)

�⌘2 Z

[0,1]2

@2u

@x2

⇣
sk+1, ⌧1⌧2�

�1
�
X̄�(tk+1)

�⌘
⌧1d⌧1d⌧2

�
⇣
��1

�
X̄�(tk)

�⌘2 Z

[0,1]2

@2u

@x2

⇣
sk+1, ⌧1⌧2�

�1
�
X̄�(tk)

�⌘
⌧1d⌧1d⌧2

� 4̃k+1Ȳ
���1(X̄�(tk))

Z 1

0

@2u

@x2

⇣
sk+1, ⌧1�

�1
�
X̄�(tk)

�⌘
d⌧1

#
1⌦̂+�

k

)
.

On one hand, since |��1
�
X̄�(tk)

�
| and |��1

�
X̄�(tk+1)

�
|  C�t1/2�✏ on ⌦̂+�

k
,

the absolute value of the last expectation in the right-hand side can be bounded
from above by

C�t1�2✏

p
sk+1

ku0
0k1,1Px0

n��X̄�(tk)
��  �t

1
2�✏

o
.

On the other hand, by (4.19), we can rewrite the sum of the first three terms in
the right hand side as

Ex0

("
X̄�(tk+1)

�

@u

@x

⇣
sk+1, 0

�
⌘
� X̄�(tk)

1� �

@u

@x

⇣
sk+1, 0

+
⌘

� X̄�(tk+1)� X̄�(tk)

1� �

@u

@x

⇣
sk+1, 0

+
⌘#

1⌦̂+�
k

)

=Ex0

⇢
1

�

@u

@x

⇣
sk+1, 0

�
⌘
� 1

1� �

@u

@x

⇣
sk+1, 0

+
⌘�

X̄�(tk+1)1⌦̂+�
k

�
= 0

by the interface condition. By the same way, we can proceed for the set ⌦̂�+
k

.
Then (4.26) follows and we obtain (4.25) as a consequence.

Combining (4.16)-(4.18), (4.24), (4.25) we arrive at

✏x0
T

 C
M�2X

k=0

"
�t1�2✏

p
sk+1

ku0
0k1,1 +

�t
3
2�3✏

p
sk+1

ku0
0k3,1

#
Px0

n��X̄�(tk)
��  �t

1
2�✏

o

+ Cku0
0k1,1�t

1
2 + Cku0

0k3,1�t.

Next, to handle the right hand side of the above inequality we use [44,
Theorem 1.2] which estimates the visits to a small ball by the process X̄�. Using
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the notations in [44] we take ⇠ = 0, b(t) ⌘ 0, �(t) = ✓
�
X̄�(tk)

�
for tk  t  tk+1,

f(t) = 1/
p
T � t, and h = �t. Since ✓(·) is bounded, we can easily check that

Assumption 1.1 and Assumption 1.2 in [44] are both satisfied. It then follows
by [44, Theorem 1.2] that there is a constant M0 such that for M � M0, the
right hand side in the above inequality is bounded above by Cku0

0k1,1�t(1�✏)/2+
Cku0

0k1,1�t1/2 + Cku0
0k3,1�t. This proves the theorem. ⇤

4.3. Proof of Theorem 6

Let u0 be any function in W, and 0 < � < 1 we will first approximate u0 by
a function u� in W4 such that

(
u�(x) = u0(x) for |x| > 2�,

u�(x) = u0(0) for ��  x  �
and

8
><

>:

u(i)
�
(2�) = u(i)

0 (2�),

u(i)
�
(�2�) = u(i)

0 (�2�),

u(i)
�
(��) = u(i)

�
(�) = 0

for 1  i  4.

For �  x  2� denote

u�(x) =u0(0) +
�
u0(2�)� u0(0)

�
p0
�x� �

�

�
+ �u(1)

0 (2�)p1
�x� �

�

�

+ �2u(2)
0 (2�)p2

�x� �

�

�
+ �3u(3)

0 (2�)p3
�x� �

�

�
+ �4u(4)

0 (2�)p4
�x� �

�

�
,

and for �2�  x  �� denote

u�(x) =u0(0) +
�
u0(�2�)� u0(0)

�
p0
�
� x+ �

�

�
� �u(1)

0 (�2�)p1
�
� x+ �

�

�

+ �2u(2)
0 (�2�)p2

�
� x+ �

�

�
� �3u(3)

0 (�2�)p3
�
� x+ �

�

�
+ �4u(4)

0 (�2�)p4
�
� x+ �

�

�
,

where pj(x), 0  j  4, are polynomials on [0, 1] satisfying the following inter-
polation problem

p(i)
j
(0) = 0, p(i)

j
(1) = �ij for 0  i, j  4,

where �ij is the Kronecker symbol. We can choose

p0(x) = x5(70x4 � 315x3 + 540x2 � 420x+ 126),

p1(x) = x5(1� x)(35x3 � 120x2 + 140x� 56),

p2(x) =
1

2
x5(1� x)2(15x2 � 35x+ 21),

p3(x) =
1

6
x5(1� x)3(5x� 6),

p4(x) =
1

24
x5(1� x)4,

which satisfy

���p(i)j

⇣ ·� �

�

⌘���
L1([�,2�])

+
���p(i)j

⇣
� ·+ �

�

⌘���
L1([�2�,��])

 C�1�i, 8 i = 1, . . . , 4
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and imply

ku0 � u�k1 =

Z 2�

�2�
|u0(y)� u0(0) + u0(0)� u�(y)|dy  C�2.

Similarly, there is a constant only depends on u0 such that

ku(i)
0 � u(i)

�
k1  C�2�i 8 i = 1, . . . , 4. (4.27)

Next, we will use the approximation u� of u0 to estimate the error ✏x
T
. We

have

✏x
T
=
��Exu0

�
Y (↵)(T )

�
� Exu0

�
Ȳ �(T )

���


��Exu0

�
Y (↵)(T )

�
� Exu�

�
Y (↵)(T )

���+
��Exu�

�
Y (↵)(T )

�
� Exu�

�
Ȳ �(T )

���

+
��Exu�

�
Ȳ �(T )

�
� Exu0

�
Ȳ �(T )

���

 I1(�) + I2(�) + I3(�). (4.28)

It follows from (2.17) that

I1(�) 
Z 1

�1
|u0(y)� u�(y)|q(↵)(T, x, y)dy  C�

Z 2�

�2�
q(↵)(T, x, y)dy  C�2.

(4.29)
By virtue of Theorem 5 and (4.27), there are constants C depending only on u
such that

I2(�)  Cku0
�
k1,1�t1/2�✏+Cku0

�
k1,1�t1/2+ku0

�
k3,1�t1�✏  C�t1/2�✏+C��2�t1�✏.

(4.30)
To proceed, we need to estimate I3(�). Let � be a function in C1(R) such

that
�(x) � 1 8 |x|  1, and �(i)(0) = 0, 8 i = 1, . . . , 4.

Denote ��(x) = �( x

2� ) then �� � 1[�2�,2�], supp(��) = [�4�, 4�], and it is clear
that �,�� 2 W2. In addition

k�0
�
k1,1  C

�
and k�0

�
k3,1  C

�3
.

Thus, Theorem 5 and (2.17) yield

Px
�
|Ȳ �(T )|  2�

�
 Ex��(Ȳ

�(T ))


��Ex��(Ȳ

�(T ))� Ex��(Y
(↵)(T ))

��+ Ex��(Y
(↵)(T ))

 C�t
1�✏

2 k�0k1,1 + C�t1�✏k�0k3,1 +
Z 4�

�4�
��(y)q

(↵)(t, x, y)dy

 C
�t

1�✏

2

�
+ C

�t1�✏

�3
+

Cp
T
k�k1�
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and

I3(�)  C�Px
�
|Ȳ �(T )|  2�

�
 C�t

1�✏

2 + C
�t1�✏

�2
+

Cp
T
k�k1�2. (4.31)

By choosing the optimal value of the type �t� of � (with � = 1/4), and com-
bining (4.28)-(4.31), we obtain (3.8). ⇤

5. Numerical Examples

Consider the initial profile on the interval [�5, 5] given by

u0(x) =

(
(1� x2)5 if |x| < 1,

0 else.
(5.1)

In this section, simulations are provided of the solution to (2.1) with (5.1) for
two values of D+ 2 {10, 100} while holding D� = 1. We consider scenarios with
� = {�⇤,�#}. The expected value solution formula from [14], and the SDE-
Euler-Maruyama method discussed in Section 3, all computed at t = 0.2, are
shown in Figure 1. For a comparison with deterministic numerical methods, we
also plot the solution obtained with an immersed interface finite element method
(IFEM) (see [45]) for the di↵usion problem (2.7). In each of the above cases,
the error is computed between the numerical approximation and the expected
value solution formula on the interval [�5, 5].

For each choice of � and D+ above, the error is computed between the
stochastic numerical approximation and the expected value solution formula
at specific points in space: {�1.5, 0, 2.5}. To reduce the computational time,
the largest stable time step was used, however the computations each involved
over ten million sample paths. The absolute value of the error is plotted versus
dt := hn on a log-log plot in Figure 2 demonstrating between zero and half order
accuracy in each case (note guide lines in each plot), as predicted by Theorem
6.

6. Conclusions

Di↵usion problems involving discontinuities in the di↵usion coe�cient and
interface conditions arise naturally as physical/biological models and are known
to lead to interesting and often unexpected phenomena [3, 4, 5, 6, 7, 8]. As
demonstrated in the present paper, the theoretical and/or numerical and com-
putational analysis is well-aided by combining equivalent PDE and SDE versions
of the phenomena. In this regard, we have constructed a stochastic Euler-
Maruyama numerical method for the SDE formulation of a discontinuous dif-
fusion problem. Our model involves a one parameter family of interface condi-
tions coupled to a di↵usion equation with discontinuous di↵usion coe�cient in
one spatial dimension. A key idea involves a reformulation of the determinis-
tic PDE and the stochastic SDE formulation of the di↵usion problem using a
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Figure 1: Initial and computed solution of (5.1) at t = 0.2 using IFEM method, the SDE-Euler
method and the expected value solution formula from [14], for various combinations of D+

and � values.

change of variables, which then allows the numerical discretization methods to
be developed in a natural way. We have proved the convergence and obtained
the convergence rate for the Euler-Maruyama numerical method under mild
assumptions. Finally, the rates of convergence of our Euler method were veri-
fied by numerical examples and compared to other approaches available in the
literature for the discretization of discontinuous di↵usion problems. Our formu-
lation of an equivalent SDE model and its numerical discretization is applicable
to a wide variety of interface conditions used in disparate applications span-
ning ecology, hydrology, astrophysics, finance and physical oceanography. Our
work in this paper adds significantly to the existing literature of SDEs and their
numerical discretization for di↵usion problems with discontinuous coe�cients
across interfaces.
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Figure 2: Error for the SDE-BE method demonstrating half order convergence (the green and
red lines indicate the zeroth and half order reference lines, respectively).

References

[1] R. S. Cantrell, C. Cosner, Spatial ecology via reaction-di↵usion equations,
Vol. 7, Wiley, 2003.

[2] J. G. Skellam, Random dispersal in theoretical populations, Biometrika
38 (1/2) (1951) 196–218.

[3] S. Azaele, A. Maritan, E. Bertuzzo, I. Rodriguez-Iturbe, A. Rinaldo,
Stochastic dynamics of cholera epidemics, Physical Review E 81 (DOI:
10.1103/PhysRevE.81.051901) (2010) 051901–1 to 05901–6.

[4] J. Reiczigel, K. Brugger, F. Rubel, N. Solymosi, Z. Lang, Bayesian anal-
ysis of a dynamical model for the spread of the usutu virus, Stochastic
Environmental Research and Risk Assessment 24 (2010) 455–462.

[5] H. Seno, S. Koshiba, A mathematical model for invasion range of popula-

25



tion dispersion through a patchy environment, Biological Invasions 7 (DOI
10.1007/s10530-005-5211-0) (2005) 757–770.

[6] F. Lutscher, E. Pachepsky, M. A. Lewis, The e↵ect of dispersal patterns on
stream populations, SIAM Review 47 (4) (2005) 749–772.

[7] F. Lutscher, M. A. Lewis, E. McCauley, E↵ects of heterogeneity on spread
and persistence in rivers, Bulletin of mathematical biology 68 (8) (2006)
2129–2160.

[8] D. Mayer, J. Reiczigel, F. Rubel, A Lagrangian particle model to predict the
airborne spread of foot-and-mouth disease virus, Atmospheric Environment
42 (2008) 466–479.

[9] C. B. Schultz, E. E. Crone, Edge-mediated dispersal behavior in a
prairie butterfly, Ecology 82 (7) (2001) 1879–1892. doi:10.1890/0012-
9658(2001)082[1879:EMDBIA]2.0.CO;2.

[10] P. Turchin, P. Kareiva, Aggregation in aphis varians: an e↵ective strategy
for reducing predation risk, Ecology (1989) 1008–1016.

[11] L. Ries, D. M. Debinski, Butterfly responses to habitat edges in the highly
fragmented prairies of central iowa, Journal of Animal Ecology 70 (5) (2001)
840–852.

[12] M. A. Aizen, P. Feinsinger, G. A. Bradshaw, P. Marquet, Bees not to
be? Responses of insect pollinator faunas and flower pollination to habitat
fragmentation, Ecological Studies (2003) 111–130.

[13] J. M. Ramirez, E. A. Thomann, E. C. Waymire, Advection–dispersion
across interfaces, Statistical Science 28 (4) (2013) 487–509.

[14] T. A. Appuhamillage, V. A. Bokil, E. Thomann, E. Waymire, B. D. Wood,
Occupation and Local Times for Skew Brownian Motion with Applications
to Dispersion Across an Interface, Annals of Applied Probability 21 (1)
(2011) 183–214, dOI: 10.1214/10-AAP691.

[15] T. A. Appuhamillage, V. A. Bokil, E. Thomann, E. Waymire, B. D.
Wood, Solute transport across an interface: A fickian theory for
skewness in breakthrough curves, Water Resour. Res. 46 (W07511,
doi:10.1029/2009WR008258).

[16] T. A. Appuhamillage, V. A. Bokil, E. A. Thomann, E. C. Waymire, B. D.
Wood, First passage times and breakthrough curves associated with inter-
facial phenomena, Arxiv preprint arXiv:1106.4350.

[17] A. Einstein, Investigations on the Theory of the Brownian Movement,
Dover Publications, 1956.
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Appendix A. Smooth First-Passage Densities for One Dimensional

Di↵usions

In this section we provide some properties of the first passage time densities
of one dimensional uniformly elliptic di↵usion processes which imply the esti-
mates for the density rx0 (s) of the first passage time before time T at point 0 of
the process Y (↵). The following Lemma is a combination of Theorem A.1 and
Lemma A.5 in [30].

Lemma 10. Let � and µ be real valued functions such that � 2 Ck+2
b

(R) and

µ 2 Ck+1
b

(R) for some non-negative integer k. Suppose that there is a positive

constant � such that �(x) > � for all x and Z(t) satisfies

Z(t) = Z0 +

Z
t

0
µ(Z(s))ds+

Z
t

0
�(Z(s))dB(s).

a, Denote ⌧0(Z) = inf{s > 0 : Zs = 0}. If T > 0 and x 6= 0 then under Px
,

the first passage time of Z(t) at point 0 before time T , ⌧0(Z)^ T , has a smooth

density rx0 (s) which is of class Ck
�
(0, T ]⇥ (�1, 0)

�
.

b, In addition, if k � 2 then for all 0  ↵ < 1 there exists a constant C such

that Z
t

0

1

s↵
rx0 (t� s)ds  C

t↵
for all 0  t  T and x 6= 0.

We also have the following estimate from [30] (See Lemma A.6).

Lemma 11. There exists a positive constant C̃ such that for 0  ↵  1 and

any function H bounded on [0, T ], continuously di↵erentiable on (0, T ] satisfying

H(0) = 0, |H 0(s)|  CH

s↵
8s 2 (0, T ]

we have

���
@

@x

Z
t

0
rx0 (t� s)H(s)ds

���  CHC̃,
���
@2

@x2

Z
t

0
rx0 (t� s)H(s)ds

���  CHC̃
⇣
1+

1

t↵

⌘
,

for all t 2 (0, T ] and x 6= 0.
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