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Abstract
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1 Introduction

The analysis and simulation of fluid flows continue to pose challenging problems whose

solutions have important scientific and practical consequences. The LANSα (Lagrangian
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Averaged Navier-Stokes-α) model was developed in an effort to provide an efficient numerical

simulation of three-dimensional turbulence on a periodic domain; see [9], [8], [4], [7], [14],

[13], [3] and references therein for recent results and perspectives. These equations may be

viewed as modifications of a regularization introduced in [2].

For α > 0, this particular model corresponds to a regularization of the (α = 0) Navier-

Stokes equations that satisfies Kelvin’s circulation theorem, and in this way avoids some of

the physical limitations present in other proposed regularizations (see [6]). Consequently,

a considerable amount of mathematical analysis, including physical interpretations, global

well-posedness in time, and finite dimensionality of the global attractor has been undertaken

for this system of equations. Much less has been obtained for convergence, especially rates

of convergence, to solutions of incompressible Navier-Stokes equations as α → 0. In fact,

the rate of convergence problem was cited as an essential open problem for alpha models in

the recent paper on MHD-α models in the conclusion section to [12].

In this paper we focus on the rate of convergence as α approaches zero of solutions of

the LANSα system of equations using a probabilistic approach introduced for incompress-

ible Navier-Stokes equations in [10] and extended in [1]; a general survey is provided in

[16]. Formally, one expects that the α ↓ 0 limit should satisfy the Navier Stokes equation

whenever these equations have a solution. Most results obtained so far are based upon a

functional analytic approach, which, in turn, produces global existence of a weak solution

and also convergence of a subsequence to a weak solution of Navier-Stokes as α → 0, see

[5]. Of course under further conditions (to be determined) for uniqueness, this will provide

convergence of the full limit as α → 0. However obtaining such conditions is also part of the

general problem. Once well-posedness in terms of convergence for unique global solutions is

obtained in an appropriate function space, then we can address the question of convergence

rate. In this paper we develop a mix of probabilistic and analytic approaches to these prob-

lems. The basic objective is to introduce and explore the multiplicative branching random
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walk cascade within the context of LANSα. From a probabilistic perspective it is noteworthy

that solutions to all of the LANSα equations (for α ≥ 0) can be accommodated by a single

probability model (branching random walk cascade), distinguished entirely by the (determin-

istic) α-dependent multiplicative factors used in the expected value representation. This may

have advantages for Monte-Carlo simulation approaches; see [15] for illustrative Monte-Carlo

numerical applications of the branching random walk cascade to Burgers equation.

From the theoretical point of view, probabilistic considerations lead to natural function

spaces for which one has representations of unique global solutions to LANSα (with periodic

boundary) for each α ≥ 0 as an expected value of a stochastic cascade defined on a common

probability space. In particular, this includes the limiting α = 0 case of incompressible

Navier-Stokes equations with periodic boundary. Within this function space we then obtain

a rate on a mixed L1 − L2 space-time norm in which LANSα solutions converge to those of

Navier-Stokes.

2 The Mild LANSα Equations

Recall that the LANSα equations on a periodic domain D = [−L, L]3, L > 0 in R3, can be

written as

∂v(α)

∂t
+∇·(u(α) ⊗ v(α)) + (∇u(α))Tv(α) = ν∆v(α) −∇p + g

∇·v(α) = 0, (1− α2∆)u(α) = v(α)

with initial data v(α)(x, 0) = v0(x). Here v(α) = (v
(α)
1 , v

(α)
2 , v

(α)
3 ) denotes the velocity field, p

the pressure, ν is a positive constant representing the viscosity, and g represents an external

body force, respectively. The superscript T denotes matrix transpose. The initial velocity

v0(x) does not depend on α and we assume, without loss of generality, that both it and g are

divergence free and that they have zero mean,∫
D

v0(x)dx =
∫

D
g(x, t)dx = 0, t ≥ 0. (2.1)
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In this paper we will consider mild solutions of the Fourier transform of this equation.

These solutions correspond to solutions of the integral equation obtained from the differential

equation, see for example [11] for an up to date use of mild solutions in the context of

the Navier-Stokes equations. In this section we present details of an equivalent alternative

formulation of the LANSα equation that is amenable to a probabilistic representation.

First, let’s introduce some notation that will be used in this paper. Define the aspect

ratio by β = 2π
2L

, and let k = (k1, k2, k3) denote the integer lattice vector with integer

coordinates k1, k2, k3. The superscript (α) will be suppressed in the remainder of this section

in which α ≥ 0 is fixed but arbitrary. With v̂ defined by v̂(k, t) = (2L)−3
∫
D v(x, t)e−iβk·xdx

(or equivalently v(x, t) =
∑

k∈Z3 v̂(k, t)eiβk·x), the Fourier transform of the LANSα equation

takes the form

∂v̂(k, t)

∂t
+ iβ

k
∑
j

û(j, t)⊗ v̂(k− j, t) +
∑
j

jû(j, t) · v̂(k− j, t)


= −ν|βk|2v̂− iβkp̂(k, t) + ĝ.

Observe that the mean zero property is preserved for all time in this evolution. In particular

v̂(0, t) = v̂0(0) = 0, ∀t ≥ 0. (2.2)

Here, we express each coefficient vector v̂(k, t) = (v̂1(k, t), v̂2(k, t), v̂3(k, t)) componentwise.

Similarly we define û, p̂, ĝ and their components, whereas j = (j1, j2, j3) also denotes an

integer lattice vector and throughout the paper the summation is always performed over Z3

unless otherwise indicated. Now integrate with respect to time from 0 to t, and utilize the

(transformed) regularization

û(k, t) =
v̂(k, t)

1 + α2|βk|2

to obtain,

v̂(k, t) = exp[−ν|βk|2t]v̂0(k)− i
∫ t

0
exp[−ν|βk|2s]

∑
j

βk · v̂(j, t− s)

1 + α2|βj|2
v̂(k− j, t− s)ds

4



−i
∫ t

0
exp[−ν|βk|2s]

∑
j

βj
v̂(j, t− s) · v̂(k− j, t− s)

1 + α2|βj|2
ds

−iβk
∫ t

0
exp[−ν|βk|2s]p̂(k, t− s)ds +

∫ t

0
exp[−ν|βk|2s]ĝ(k, t− s)ds (2.3)

Remark Using the properties of convolutions, one can rewrite the summations appearing

in the third term of (2.3) as

∑
j

v̂(j, t− s) · v̂(k− j, t− s)
βj

1 + α2|βj|2
=

1

2

∑
j

v̂(j, t− s) · v̂(k− j, t− s)
βj

1 + α2|βj|2

+
1

2

∑
j

v̂(j, t− s) · v̂(k− j, t− s)
β(k− j)

1 + α2|β(k− j)|2

=
|βk|2α2

2

∑
j

βj
v̂(j, t− s) · v̂(k− j, t− s)

(1 + α2|βj|2)(1 + α2|β(k− j)|2)

−α2
∑
j

βj
v̂(j, t− s) · v̂(k− j, t− s)

(1 + α2|βj|2)(1 + α2|β(k− j)|2)
βk · βj

+βk
∑
j

v̂(j, t− s) · v̂(k− j, t− s)

1 + α2|β(k− j)|2
. (2.4)

Observe that the projection onto the plane perpendicular to k of this last term vanishes.

It should also be noted that ones obtains the Navier-Stokes equation from (2.3) by taking

α = 0.

To proceed, we introduce a multiplier function h : Z3 → R+ such that h(k) > 0 for k 6= 0.

For convenience we take h(0) = 0. This is permissible in what follows since, in view of the

mean-zero property (2.2), the terms j = 0 and j = k can be dropped from the convolution.

For k 6= 0, let ek = k/|k| and denote the projection on the plane perpendicular to k by πk.

Then, eliminating the pressure using this projection, dividing by h(k) and balancing, for

k 6= 0 one has for arbitrary 0 ≤ qj(j = 0, 1, 2, 3), q0 + q1 + q2 + q3 = 1,

v̂(k, t)

h(k)
= exp[−ν|βk|2t] v̂0(k)

h(k)

+ q0

∫ t

0
ν|βk|2 exp[−ν|βk|2s]

∑
j

[
h ∗ h(k)|βk|

ν|βk|2h(k)(1 + α2|βj|2)
1

q0

]
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[
(ek · v̂(j, t− s))(πkv̂(k− j, t− s))

i h(j)h(k− j)

]
h(j)h(k− j)

h ∗ h(k)
ds

+ q1

∫ t

0
ν|βk|2 exp[−ν|βk|2s]

∑
j

[
α2h ∗ h(k)|βk|2

2ν|βk|2h(k)

1

q1

|βj|
(1 + α2|βj|2)(1 + α2|βk− βj|2)

]
[
πk(ej)

v̂(j, t− s) · v̂(k− j, t− s)

i h(j)h(k− j)

] [
h(j)h(k− j)

h ∗ h(k)

]
ds

+ q2

∫ t

0
ν|βk|2 exp[−ν|βk|2s]

∑
j

[
α2h ∗ h(k)|βk|

ν|βk|2h(k)

|βj|2

(1 + α2|βj|2)(1 + α2|βk− βj|2)
1

q2

]
[
πk(ej)(ek · ej)

i v̂(j, t− s) · v̂(k− j, t− s)

h(j)h(k− j)

]
h(j)h(k− j)

h ∗ h(k)
ds

+ q3

∫ t

0
ν|βk|2 exp[−ν|βk|2s]

[
ĝ(k, t− s)

ν|βk|2h(k)

1

q3

]
ds. (2.5)

To simplify this expression let

m(k) =
h ∗ h(k)

h(k)ν|βk|
, W (j, n; k) =

h(j)h(n)

h ∗ h(k)
δk(j, n), (2.6)

where δk(j, n) = 1 if j + n = k, and vanishes otherwise. Define, with k = j + n,

m
(α)
0 (j, n) = m(k)

1

q0(1 + α2|βj|2)
≤ m(k)

q0

, (2.7)

and for l = 1, 2,

m
(α)
l (j, n) = m(k)

α2|βj|l|βk
2
|2−l

(1 + α2|βj|2)(1 + α2|βn|2)ql

. (2.8)

Also, for j and n in Z3, and with k = j + n, define the bilinear forms on Z3 × Z3

Q0(a, b; j, n) = −i(ek·a)πk(b), Q1(a, b; j, n) = −iπk(ej)(a·b), Q2(a, b; j, n) = iπk(ej)(ej·ek)(a·b).

(2.9)

It should be noted that

|Ql(a, b; j, n)| ≤ |a||b|. (2.10)

Introducing the re-scaled Fourier coefficients

χ(k, t) =
v̂(k, t)

h(k)
, ϕ(k, t) =

ĝ(k, t)

ν|βk|2h(k)q3

(2.11)
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the equation reduces to the following equivalent form:

χ(k, t) = exp[−ν|βk|2t]χ0(k)

+
2∑

l=0

ql

∫ t

0
ν|βk|2 exp[−ν|βk|2s]

∑
j,n

m
(α)
l (j, n)Ql(χ(j, t− s), χ(n, t− s); j, n)W (j, n; k) ds

+ q3

∫ t

0
ν|βk|2 exp[−ν|βk|2s] ϕ(k, t− s)ds (2.12)

The probabilistic interpretation of this equation given in the next section is made possible by

observing that W (j, n; k) (for fixed k) is a probability mass functions with support contained

in the set {(j, n) ∈ Z3×Z3 : j+n = k}. In particular, these will provide transition probabilities

for which a wavenumber k will branch into a pair of wavenumbers j, k− j. This view of the

underlying equations will be exploited in the next section to obtain conditions for global

existence, uniqueness, and convergence.

3 Stochastic Cascade Representation: Global exis-

tence, uniqueness and convergence

Equation (2.12) can be interpreted in terms of an expected value of a multiplicative functional

defined on a branching binary tree. Indeed, each of the terms of this equation has been

weighted to explicitly reflect this form. For example, if one considers a random variable S∅

with an exponential distribution with parameter ν|βk|2, the first term in this equation can

be written as

E [χ0(k)1[S∅ > t]] .

On the other hand, if S∅ < t one thinks of either terminating the process at time t − S∅

with probability q3, or branching into two particles (j, n) chosen according to the probability

mass function W (j, n; k), and (independently) assigned multipliers m
(α)
l (j, n) with probability

ql(l = 0, 1, 2). The process then continues with each branch following the same process

independently of each other.

7



To provide the details of this construction, let V denote the vertex of a complete binary

tree rooted at ∅,

V = ∪∞j=0{1, 2}j = {∅, 〈1〉, 〈2〉, 〈11〉, 〈12〉, ...}.

As standard, a vertex 〈v〉 = 〈v1, v2, ....vk〉 of the binary tree is said to be of length |〈v〉| = k,

with |∅| = 0. For l = 1, 2, denote by 〈vl〉 = 〈v1, v2, ..., vk, l〉 the vertex of length k+1 obtained

from 〈v〉 by concatenating the value l.

Let {κ〈v〉 : 〈v〉 ∈ V} be a collection of independent and identically distributed random

variables with

P(κ〈v〉 = l) = ql, l = 0, 1, 2, 3.

Let {S〈v〉 : 〈v〉 ∈ V} be a collection of i.i.d. mean-one exponentially distributed random vari-

ables, and independent of {κ〈v〉 : 〈v〉 ∈ V}. Then for each 〈v〉 ∈ V and nonzero wavenumber

k〈v〉,

S〈v〉 =
1

ν|βk〈v〉|2
S〈v〉

is a random variable, independent of {κ〈v〉 : 〈v〉 ∈ V}, having an exponential distribution

with parameter ν|βk〈v〉|2. Finally, conditioned on k〈v〉 and κ〈v〉 = l for l 6= 3, the ordered pair

(k〈v1〉, k〈v2〉) is chosen according to the probability mass function W (j, n; k〈v〉). The resulting

family of wavenumbers {k〈v〉 : 〈v〉 ∈ V} defines a tree-indexed Markov chain starting at

k∅ = k whose distribution does not depend on α.

Next we recursively define the cascade functional by

〉〈(α)(k〈v〉, t) =



χ0(k〈v〉) if S〈v〉 ≥ t

ϕ(k〈v〉, t− S〈v〉) if S〈v〉 < t, and κ〈v〉 = 3

m
(α)
l (k〈v1〉, k〈v2〉)Ql

(
〉〈(α)(k〈v1〉, t− S〈v〉), 〉〈(α)(k〈v2〉, t− S〈v〉); k〈v1〉, k〈v2〉

)
if S〈v〉 < t, and κ〈v〉 = l 6= 3.

(3.13)

Note that with q3 = 1/2, the expected number of branches at any given vertex equals 1.

Consequently, the recursion is well defined, since with probability one it terminates after a

finite number of branchings.
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This recursion provides a stochastic representation of the solution of equation (2.12) ac-

cording to the following theorem.

Theorem 3.1 Assume that v̂0(k), ĝ(k, s) and h(k) are such that E(|〉〈(α)(k, t)|) is finite for

all k ∈ Z3, 0 ≤ t ≤ T. Then v̂(α)(k, t) = h(k)E(〉〈(α)(k, t)) is a mild solution of the LANSα

equation.

Proof: It suffices to show that χ(k, t) = v̂(k, t)/h(k) satisfies equation (2.12). Under the

assumption of finite expectation, one has

E(〉〈(α)(k, t)) = E(〉〈(α)(k, t)1[S∅ ≥ t]) +
3∑

l=0

qlE(〉〈(α)(k, t)1[S∅ < t]|κ∅ = l)

= P(S∅ ≥ t)χ0(k) + q3

∫ t

0
ν|βk|2 exp[−ν|βk|2s]ϕ(k, t− s)ds

+
2∑

l=0

ql

∫ t

0
ν|βk|2 exp[−ν|βk|2s]

E
[
m

(α)
l (k〈1〉, k〈2〉)Ql(〉〈(α)(k〈1〉, t− s), 〉〈(α)(k〈2〉, t− s); k〈1〉, k〈2〉)|κ〈v〉 = l

]
ds

The theorem follows since by construction,

E
[
Ql(〉〈(α)(k〈1〉, t− s), 〉〈(α)(k〈2〉, t− s); k〈1〉, k〈2〉)|κ∅ = l

]
=

∑
j+n=k

Ql(〉〈(α)(j, t− s), 〉〈(α)(n, t− s); j, n)W (j, n; k)

2

Theorem 3.1 provides the basis for the determination of function spaces appropriate to

this theory by considering conditions on the initial data and forcing such that the hypoth-

esis hold. Give C∞(T 3) the Fréchet space topology defined by the seminorms ||g||m =

supx∈T 3{|∂(m)g(x)|} and let D′ denote the usual space of bounded continuous linear func-

tionals on C∞(T 3) with the weak*topology. Given a majorizing kernel h one defines a

function space Fh of distributions (in the sense of Schwartz) by

Fh = {v ∈ D′ : ||v||h ≡ sup
0≤t≤T ,k 6=0

|v̂(k, t)|
h(k)

< ∞}. (3.14)
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Such function spaces can be viewed as a generalization of Besov spaces; see [1].

Observe for any positive constant c > 0 that,

Fh = Fch, ||v||ch =
1

c
||v||h. (3.15)

Thus we will formulate results in terms of a standardized majorizing kernel defined by

h ∗ h(k) ≤ |k|h(k), k 6= 0.

In particular results may be stated for standardized kernels in defining Fh. On the other

hand, such constants are reflected in the size of the ball in the space Fh for which the global

existence/uniqueness/convergence results are obtained.

To be precise, suppose that h(k) is a standardized majorizing kernel. The approach is to

show that one may choose R > 0 such that in the stochastic representation defined by Rh

one has

m
(α)
l (k, j) ≤ 1, l = 0, 1, 2.

In this way, if the initial data v0 ∈ Fh(= FRh), and forcing are subject to the conditions

|v̂0(k)| ≤ Rh(k), |ĝ(k, t)| ≤ ν|βk|2Rh(k)q3,

then one obtains

|〉〈(α)(k, t)| ≤ 1.

In particular, the hypothesis of Theorem 3.1 are trivially satisfied. One may note that

the condition on the forcing may be equivalently expressed by a condition on the inverse

Laplacian of g (noting the role of β in the definition of the Fourier coefficients):

∆−1g ∈ Bq3νR.

The following lemma will be used for the determination of the radius R in the proof of

the theorem to follow.
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Lemma 3.1 The following inequality holds for any α, β > 0 and k ∈ Z3.

α2|βk||βj|
(1 + α2|βj|2)(1 + α2|βk− βj|2)

≤ 1.

Proof: Introducing a new variable γ = αβ > 0 we need only prove the following:

|j|
(1 + γ2|j|2)(1 + γ2|k− j|2)

− 1

γ2|k|
≤ 0

Consider two cases |j| ≥ |k| and |j| < |k| for a given k. For the first case we simply find

|j|
(1 + γ2|j|2)(1 + γ2|k− j|2)

≤ |j|
1 + γ2|j|2

≤ 1

γ2|j|
≤ 1

γ2|k|

and done. For the second case, using the fact |k− j|2 ≥ (|k|−|j|)2 we will show, for 0 ≤ t ≤ a,

t

(1 + γ2t2)(1 + γ2(t− a)2)
≤ 1

γ2a
.

But by the substitution u = γt, v = γ(a − t), this is equivalent to another inequality for

0 ≤ u ≤ γa,

u(u + v)

(1 + u2)(1 + v2)
≤ 1.

which, if expanded, is the same as

(uv)2 − uv + v2 + 1 = (uv − 1

2
)2 + v2 +

3

4
> 0.

Thus the proof is complete

2

.

Conditions for global existence, uniqueness and convergence of mild solutions (as α ↓ 0)

may now be expressed in terms of a suitably small ball in the space Fh of the form:

BR = {v ∈ Fh : ||v||h ≤ R}, R = νβ/6. (3.16)
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Theorem 3.2 Let h be a standardized majorizing kernel. Take q3 = 1
2
, and q0 = q1 = q2 = 1

6
.

Let BR ⊆ Fh denote the ball of radius R centered at 0, where R = νβ
6
. If the v0 ∈ BR and

∆−1g ∈ B νR
2

then the solution of each LANSα, v̂α(k, t) exists and is unique for all t > 0.

Moreover, for each k ∈ Z3 one has

lim
α→0

v(α)(k, t) = v(0)(k, t).

Proof: As noted earlier the choice q3 = 1
2

insures that the cascade terminates, i.e., the

branching is critical. The existence of a common function space is based on the observation

that the multiplier for the Navier-Stokes equation (α = 0) is found to be an upper bound of

the multipliers of the LANSα for α > 0. We easily observe with respect to hR := Rh one has

(hR ∗ hR)(k) ≤ R|k|hR(k).

Thus,

||χ||hR
≤ 1, ||∆−1g||hR

≤ 1.

So, applying the stochastic cascade representation for the majorizing kernel hR, one has

m(k) ≤ R

νβ
,

and therefore

m
(α)
0 (j, k− j) ≤ m(k)

q0

=
R

q0νβ
.

Next from Lemma 3.1, we have

m
(α)
1 (j, k− j) ≤ m(k)

2q1

≤ R

2q1νβ
.

Finally

m
(α)
2 (j, k− j) ≤ m(k)

q2

≤ R

q2νβ
.

Thus one may take

R = νβ min{q0, 2q1, q2} =
νβ

6
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to bound each multiplier by unity.

The uniqueness follows from the martingale argument originating in [10], and also used

in [1].

The pointwise convergence of the Fourier coefficients is an immediate consequence of the

expected value representation and Lebesgue’s dominated convergence theorem.

2

Remark Recalling that q3 = 1
2
, it is evident from the above proof with regard to the size

R of the ball, that the optimal choice for 0 < q0, q1, q2 < 1
2

with sum 1
2

is the assumed

q0 = q1 = q2 = 1
6
.

In the next section we indicate some general methods for constructing majorizing kernels

to which the above theory applies. These are extensions of methods given in [1]. Also, a

primary goal of this paper is to obtain a rate of convergence in a mixed L1 − L2 space-time

norm in function spaces defined by a certain class of majorizing kernels whose construction

is also provided in the next section.

4 Majorizing Kernels for LANSα

Following the definition used in [1], a non negative function h(k) defined on Z3 is said to be

a majorizing kernel for the Navier-Stokes equation (α = 0) if there exists C > 0 such that

h ∗ h(k) ≤ C|βk|h(k), k 6= 0. (4.17)

Here h ∗ h is the discrete convolution h ∗ h(k) =
∑

j h(j)h(j− k). Since all finite-dimensional

norms are equivalent, the choice of norm defining |k| is often taken as l1 for convenience.

Observe that if h is a majorizing kernel then so is ch for any positive constant c.

Remark The majorizing theory developed for incompressible Navier-Stokes equations on R3

in [1] is without boundary. In particular convolution is an integral formula in that setting.
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While it was recognized that the general ideas would go over to periodic boundary, until now

there has not been a need to exhibit examples of majorizing kernels in this context. One

point for distinction is the singularity as the wavenumber ξ → 0 required for (4.17) on R3.

No such constraint arises on the lattice R3. Convolution requires that functions be defined

on the entire group but, in view of the mean-zero property (2.2), the value at zero may be

arbitrarly specified. The present choice h(0) = 0 is a matter of convenience.

From the point of view of analysis it is occasionally more convenient to obtain majorizing

kernels for integral convolutions. The following proposition firms up a useful connection.

Proposition 4.1 For measurable h : R3 → [0,∞), define

h ∗c h(ξ) :=
∫
Rd h(ξ − η)h(η)dη, ξ ∈ R3,

and

h ∗d h(k) :=
∑

k∈Z3

h(k− j)h(j), k ∈ Z3.

Suppose

h ∗c h(ξ) ≤ c|ξ|h(ξ), ξ ∈ R3.

Let Qk(1) denote the unit cube centered at k ∈ Z3. If there are constants c1, c2 such that

c2h(k) ≤ h(η) ≤ c1h(k), ∀η ∈ Qk(1),

then

c2
2h ∗d h(k) ≤ h ∗c h(k) ≤ c2

1h ∗d h(k), k ∈ Z3.

In particular,

h ∗d h(k) ≤ c

c2
2

|k|h(k), k 6= 0.

Proof: Use the l1-norm on R3 to get for η ∈ Qj(1), and k ∈ Z that k− η ∈ Qk−j. Therefore,

h ∗c h(k) =
∫
R

h(η)h(k− η)dη

14



=
∑
j∈Z

∫
Qj(1)

h(η)h(k− η)dη

≥
∑
j∈Z

∫
Qj(1)

c2
2h(j)h(k− j)dη = c2

2 h ∗d h(k). (4.18)

The upper bound is proved in the same way. From the majorizing property one obtains

h ∗d h(k) ≤ 1

c2
2

h ∗c h(k) ≤ c

c2
2

|k|h(k).

2

Remark The special notations for convolution (∗c, ∗d) introduced in the lemma will dropped

when the meaning of ∗ is clear from the context.

As an application it follows that

Corollary 4.1 The function

h(k) =
e−|k|

|k|
, k ∈ Z3, k 6= 0, h(0) = 0,

defines a majorizing kernel. In fact, h ∈ l1 is normalizable to a probability.

The majorizing kernel provided by Corollary 4.1 is significant in providing an example of

a majorizing kernel satisfying the moment conditions under which rates of convergence will

be obtained in the last section of this paper. As noted in [1], the continuous version of this

kernel implicitly appears in the analysis in [10]. Also, one may check that the lattice potential

it is asymptotically equivalent to a three-dimensional Bessel potential on {k ∈ Z : |k| ≥ 1}.

However, the regularity and uniqueness, and (full) convergence of solutions as α → 0 can

be obtained for a larger class of majorizing kernels. So we include general approaches to the

construction of such functions in the remainder of this section. This is largely an extension

of ideas developed in [1] to the (lattice) case for periodic boundary conditions.

We first note the following.

15



Lemma 4.1 Let g1, g2 : Zd → R+. Assume that g1(k) ∼ g2(k) for large k. Then there exists

c > 0, C > 0 such that for all k ∈ Zd

cg2(k) ≤ g1(k) ≤ Cg2(k)

Proof From the asymptotic behavior, it follows that there exists M such that |k| > M ,

(1/2)g2(k) ≤ g1(k) ≤ 2g2(k). Since the gj(k) are assumed to be strictly positive, the lemma

follows by taking c = min{1/2, g1(k)/g2(k), |k| ≤ M}, and C = max{2, g1(k)/g2(k), |k| ≤ M}.

2

Lemma 4.2 Let gj : Z → (0,∞) j = 1, 2, 3 be such that

cj|k|δjgj(k) ≤ gj ∗ gj(k) ≤ Cj|k|δjgj(k), ∀k 6= 0, gj ∗ gj(0) = mj < ∞

and let k = (k1, k2, k3), δ =
∑

j δj. Then, h(k) = Π3
j=1gj(kj), satisfies for appropriate c, C,

c|k|δh(k) ≤ h ∗ h(k) ≤ C|k|δh(k), h ∗ h(0) = M < ∞

Proof This is immediate since the variables separate. Note if C̃j takes the values Cj or mj,

then C = max ΠC̃j, and M = Πjmj. Similar considerations apply to c.

2

The following is an immediate consequence of these lemmas.

Lemma 4.3 Let 1 > θ > 1/2 and let g(k) = |k|−θ for 0 6= k ∈ Z, g(0) = 1. Then there

exists c, C > 0 such that for k 6= 0,

c|k|1−θg(k) ≤ g ∗ g(k) ≤ C|k|1−θg(k).

Proof: For arbitrary k > 0 one has

g ∗ g(k) =
k−1∑
j=1

1

jθ(k − j)θ
+ 2

∞∑
j=k+1

1

jθ(j − k)θ
+ 2

1

kθ

=
k

k2θ

k−1∑
j=1

1

(j/k)θ(1− (j/k))θ

1

k
+ 2

∞∑
j=k+1

1

(j/k)θ((j/k)− 1)θ

1

k

+ 2
1

kθ

16



Since for large k one has

k−1∑
j=1

1

(j/k)θ(1− (j/k))θ

1

k
∼
∫ 1

0

1

xθ(1− x)θ
dx = B(1− θ, 1− θ),

and
∞∑

j=k+1

1

(j/k)θ((j/k)− 1)θ

1

k
∼
∫ ∞

1

1

xθ(x− 1)θ
dx = B(2θ − 1, 1− θ),

the conditions on θ imply that these integrals and hence the series are convergent. The

lemma follows applying Lemma 4.1 with g1(k) = g ∗ g(k) and g2(k) = k1−2θ.

2

A first example of a majorizing kernel is a consequence of Lemma 4.2 and 4.3.

Corollary 4.2 Let g(k) = |k|−2/3 for 0 6= k ∈ Z, g(0) = 1 and for k ∈ Z3 let h(k) =

g(k1)g(k2)g(k3). Then there exists c, C > 0 such that

c|k|h(k) ≤ h ∗ h(k) ≤ C|k|h(k).

A further example of a majorizing kernel is given by the following proposition.

Lemma 4.4 For 0 6= k ∈ Z3, let h(k) = |k|−2 and set h(0) = 1. Then there exists positive

c1, c2 such that

c1|k|h(k) ≤ h ∗ h(k) ≤ c2|k|h(k)

Proof: We follow similar steps as in the proof of Lemma 4.3. Indeed, for k 6= 0,

h ∗ h(k) =
2

|k|2
+

∑
0 6=j6=k

1

|j|2|k− j|2

=
1

|k|

 2

|k|
+

∑
0 6=j6=k

1

|j/|k||2|ek − j/|k||2
1

|k|3

 ∼ A

|k|

were ek = k/|k| and

A =
∫
R3

1

|x|2|e1 − x|2
dx.

The proof is completed by virtue of Lemma 4.1.

2
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5 Rates of Convergence in Physical Space

In this section we pursue the convergence obtained in the preceding section further by ana-

lyzing the rate of convergence for a particular class of majorizing kernels.

Having identified natural function spaces for this problem, we will analyze the evolution

of the differences denoted by

δ(k, t) = v(α)(k, t)− v(0)(k, t), k ∈ Z3, ∆(t) := sup
k
|δ(k, t)|, t ≥ 0.

Note that the forcing term ĝ will cancel in this difference. In particular one has

Proposition 5.1 Let h ∈ l1(Z3) be a standardized majorizing kernel satisfying the following

further moment conditions:

∑
j
|j|h(j) < ∞,

∑
j
|j|lh(j)h(k− j) < ∞, k ∈ Z3, l = 2, 3.

Let γ = νβ2

2
. If ||v0||h ≤ M then there is a constant C(T ) > 0, not depending on α, such that

∫ T

0
eγs∆(s)ds ≤ C(T )α2.

Proof: Consider the projection on the plane perpendicular to k of (2.3). One then has,

i δ(k, t)

=
∫ t

0

∑
j
{βk · v̂(α)(j, t− s)

1 + α2|βj|2
πkv̂(α)(k− j, t− s)

−βk · v̂(0)(j, t− s) πkv̂(0)(k− j, t− s)}e−ν|βk|2s

+
1

2

∫ t

0

∑
j

D(α(j, k)(v̂(α)(j.t− s) · v̂(α)(k− j, t− s))e−ν|βk|2sds

=
∫ t

0

∑
j
{βk · δ(j, t− s)πkv̂(α)(k− j, t− s)

+βk · v̂(0)(j, t− s)πkδ(k− j, t− s)} 1

1 + α2|βj|2
e−ν|βk|2sds

18



−
∫ t

0
e−ν|βk|2s

∑
j

α2|βj|2

1 + α2|βj|2
βk · v̂(0)(j, t− s)πkv̂(0)(k− j, t− s)ds

+
1

2

∫ t

0
e−ν|βk|2s

∑
j

D(α)(j, k){δ(j, t− s)v̂(α)(k− j, t− s) + v̂(0)(j, t− s) · δ(k− j, t− s)

+v̂(0)(j, t− s)v̂(0)(k− j, t− s)}ds, (5.19)

where

D(α)(j, k) = πk(βj)

[
1

1 + α2|βj|2
− 1

1 + α2|β(k− j)|2

]
.

Suppose that

|v̂(0)(k)| ≤ Mh(k), k 6= 0.

Then

|v̂(α)(k, t)| ≤ Mh(k), k 6= 0, t ≥ 0.

Straightforward estimates yield the following integral inequality.

∆(t) ≤ sup
k
{2M [

∑
j

h(j)

1 + α2|βj|2
]
∫ t

0
|βk|e−ν|βk|2s∆(t− s)ds

+M2α2
∑
j

|βj|2h(j)h(k− j)

1 + α2|βj|2
∫ t

0
|βk|e−ν|βk|2sds

+
1

2
2M

∑
j

∣∣∣D(α)(j, k)
∣∣∣h(j)

∫ t

0
e−ν|βk|2s∆(t− s)ds

+
1

2
M2

∑
j

∣∣∣D(α)(j, k)
∣∣∣h(j)h(k− j)

∫ t

0
e−ν|βk|2sds}. (5.20)

It is convenient to label the four terms appearing in the supremum, alternatively according

to their “Gronwall” roles as homogeneous or forcing terms, as H1, F1, H2, F2. Then

∆(t) ≤ sup
k
{H1 + F1 + H2 + F2}.

Observing that

|πk(βj)| = |πk(β(k− j))| k, j ∈ Z3,
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one has

∣∣∣D(α)(j, k)
∣∣∣ ≤ |πk(βj)| ||β(k− j)|2 − |βj|2|

(1 + α2|βj|2)(1 + α2|β(k− j)2)
α2 ≤

2α2|πk(βj)||βj|2

(1 + α2|βj|2)(1 + α2|β(k− j)2)
, (5.21)

∫ t

0
|βk|e−ν|βk|2sds ≤ 1

ν|βk|
≤ 1

βν
, (5.22)

∫ t

0
e−ν|βk|2sds ≤ 1

ν|βk|2
≤ 1

νβ2
, (5.23)

and

|βk|e−ν|βk|2s ≤ 1√
νs

e−
1
2
ν|βk|2s ≤ e−

1
2
νβ2s

√
νs

. (5.24)

Using (5.22), the first forcing term is bounded as

F1 ≤
βα2M2

ν

∑
j
|j|2h(j)h(k− j).

Using (5.21) and (5.23), one obtains

F2 ≤
βα2M2

ν

∑
j
|j|3h(j)h(k− j).

Let

m0 =
∑
j

h(j)

1 + α2|βj|2
, m1 =

∑
j
|j|h(j),

and

m` =
∑
j
|j|` h(j)h(k− j)

h ∗ h(k)
, l = 2, 3.

The forcing term contribution is bounded by

F1 + F2 ≤ α2M2β

ν
(m2 + m3).

One has using (5.24) and remembering |k| ≥ 1,

H1 ≤ 2Mm0

∫ t

0
e−γs 1√

νs
∆(t− s)ds.
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To bound the second homogeneous term it is enough to use the obvious bound

|D(α)(j, k)| ≤ 2|βj|. (5.25)

Using this and (5.24), one has

H2 ≤ 2Mβ
∑
j
|j|h(j)

∫ t

0
e−γs 1√

νs
∆(t− s)ds.

Combining these estimates yields

∆(t) ≤ M∗

α2 +
∫ t

0

e−γ(t−s)√
ν(t− s)

∆(s)ds

 ,

where

M∗ = max{M2β

ν
(m2 + m3), 2Mm1β, 2Mm0}.

It is convenient to consider

∆̃(t) = eγt∆(t), t ≥ 0.

Then

∆̃(t) ≤ M∗

α2eγt +
∫ t

0

∆̃(s)ds√
ν(t− s)

 , t ≥ 0. (5.26)

The special “square-root” case of the Abel transform term appearing in this inequality is

“invertible” by multiplying (5.26) by 1√
u−t

and integrating over (0, u), say, to obtain

∫ u

0

∆̃(t)√
u− t

dt ≤ α2M∗
∫ u

0

eγt

√
u− t

dt +
M∗
√

ν

∫ u

0

∫ t

0

∆̃(s)√
(u− t)(t− s)

dsdt

= α2M∗
∫ u

0

eγt

√
u− t

dt +
M∗
√

ν

∫ u

0

∫ u

s

∆̃(s)√
(u− t)(t− s)

dtds

= α2M∗eγu
∫ u

0

e−γt

√
t

dt +
M∗
√

ν

∫ u

0
∆̃(s)

∫ 1

0

1√
τ(1− τ)

dτds

= α2c(u) +
M∗π√

ν

∫ u

0
∆̃(s)ds, (5.27)

where

c(u) = M∗eγu
∫ u

0

e−γt

√
t

dt.
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Substituting this bound into (5.26) yields

∆̃(t) ≤ α2M∗
(
eγt +

1√
ν
c(t)

)
+

M∗2π

ν

∫ t

0
∆̃(s)ds. (5.28)

Thus, viewed as a differential inequality for I(t) =
∫ t
0 ∆̃(s)ds, one may introduce the appro-

priate integrating factor (or apply a trivial version of Gronwall’s inequality), to obtain

∫ t

0
eγs∆(s)ds =

∫ t

0
∆̃(s)ds ≤ α2C(t), (5.29)

where

C(t) = M∗e
M∗2π

ν
t
∫ t

0
(eγs +

1√
ν
c(s))ds.

2

We are now in a position to prove the main theorem in which we obtain convergence at

a rate of order α in a mixed L1-norm in time of the spatial (energy) L2-norm.

Theorem 5.1 Let h ∈ l1(Z3) be a standardized majorizing kernel satisfying the following

further moment conditions:

∑
j
|j|h(j) < ∞,

∑
j
|j|lh(j)h(k− j) < ∞, k ∈ Z3, l = 2, 3.

Take q0 = q1 = q2 = 1
6

and q3 = 1
2
. Let γ = νβ2

2
. Let R = νβ

6
and suppose v0 ∈ BR,

∆−1g ∈ B νR
2
. Then there is a positive constant A(T ), not depending on α, such that

∫ T

0
||v(α)(·, t)− v(0)(·, t)||L2(T 3)dt ≤ A(T )α,

where for each α ≥ 0, v(α) denotes the unique global solution to LANSα.

Proof: The global existence and uniqueness follow from the representation Theorem 3.2.

Observe that for v0 ∈ BR one has

|v̂(α)(k, t)| ≤ Rh(k), α ≥ 0.
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Also, using the Plancherel identity, Cauchy-Schwarz inequality and this bound, one has

∫ T

0
||v(α)(·, s)− v(0)(·, s)||L2(T 3)ds

=
∫ T

0
e−

γs
2 e

γs
2 ||v̂(α)(·, s)− v̂(0)(·, s)||

l2(Z3
)
ds

≤
(∫ T

0
e−γs

) 1
2

(
∫ T

0
eγs sup

k
|v̂(α)(k, s)− v̂(0)(k, s)|

∑
k

∣∣∣v̂(α)(k, s)− v̂(0)(k, s)
∣∣∣)ds)

1
2

≤
√

1− e−γT

γ

(
2R

∫ T

0
eγs∆(s)ds

) 1
2

≤ α

√
2RC(T )

1− e−γT

γ
= αA(T ),

where the constant C(T ) > 0 was determined in the Proposition 5.1.

2

The small ball condition required here is both for well-posedness of the rate of convergence

problem, i.e., existence and uniqueness, as well as the actual rate itself. It will be interesting

to see if comparable rates can be determined in other function spaces based on other methods,

e.g., energy estimates.
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